Graph diffusion model for spatio-temporal graph generation

Junha Park

Yonsei Univ. College of Medicine MARS GN4 Team Lead 2023.06.24

Junha Park

Research interest

1. Computational methods for bioinformatics

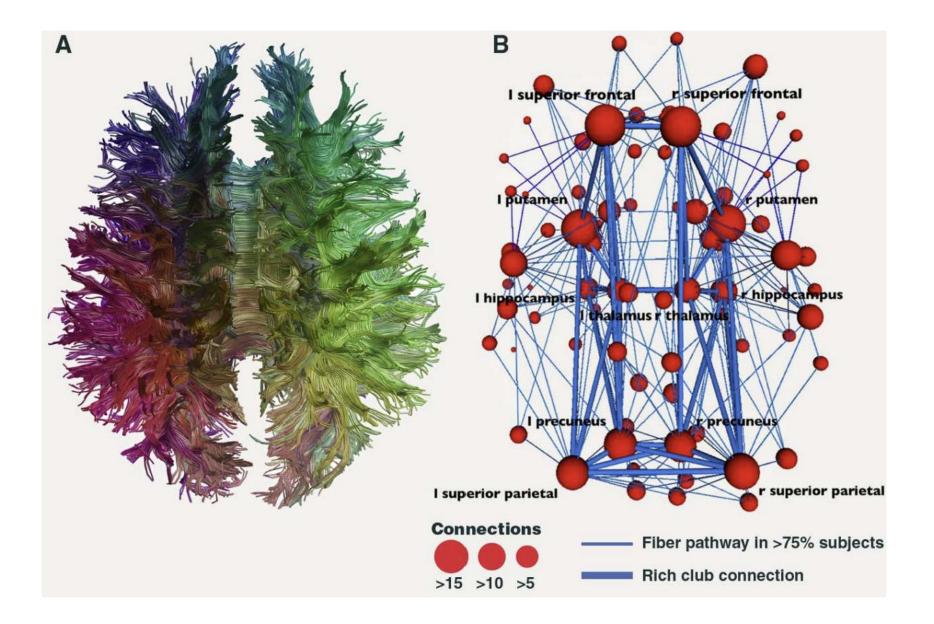
- Statistical models for sparse, hi-dim geometry of biological data
- Generative deep learning models

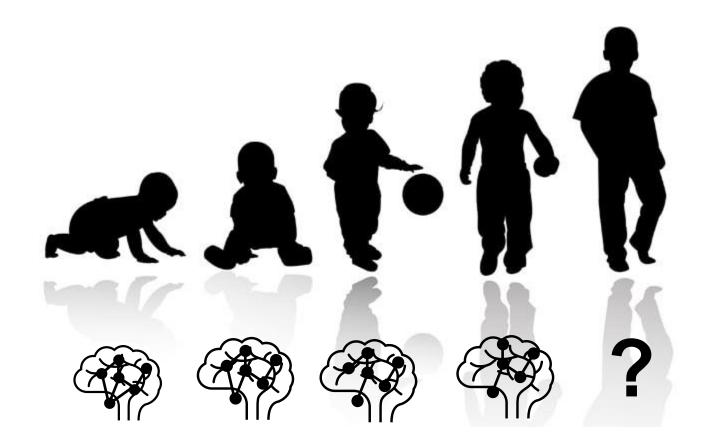
2. Medical image analysis

- Self supervised learning in multi-modality
- Universal medical image processing

3. Quantum computing

- Statistical algorithms inspired by adiabatic quantum computing
- Quantum analog of conventional machine learning algorithms





Story begins from

Dynamic graph

Series of dynamic graph

Generating series of dynamic graph

Systematic approach: Classify, Regress, and Generate

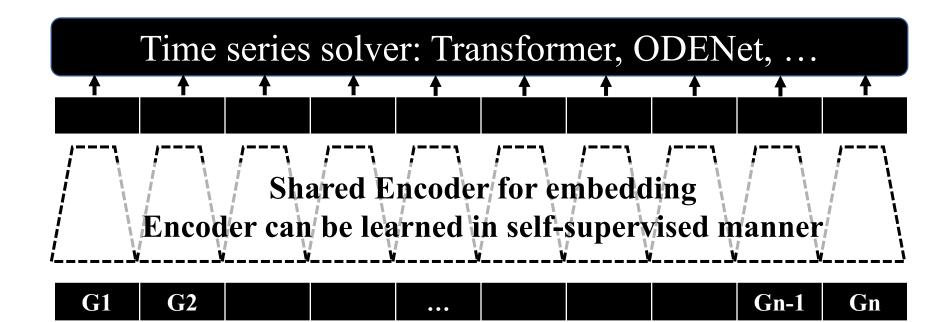
Naïve spatio-temporal approach

Somehow encode spatial data. Provide embedding to transformer.

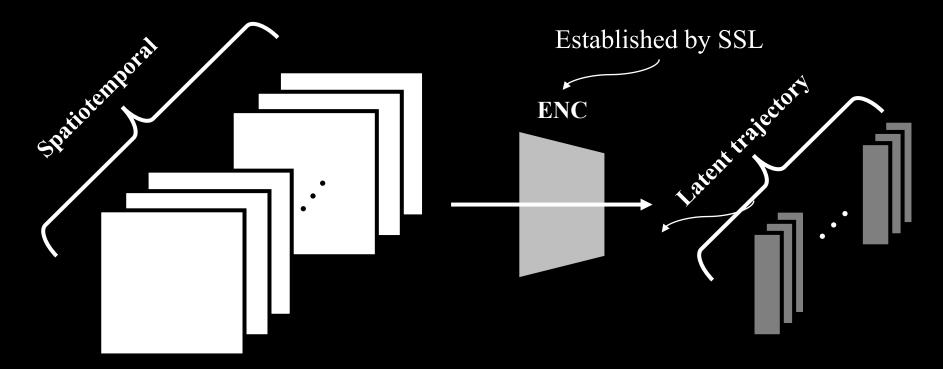
Naïve spatio-temporal approach

$\mathbf{h}_{t} = \mathbf{f}_{ENC}(\mathbf{G}_{t}) \ (t=1, \dots, T)$ prediction = $\mathbf{g}_{TSsolver}(||_{t} \mathbf{h}_{t})$

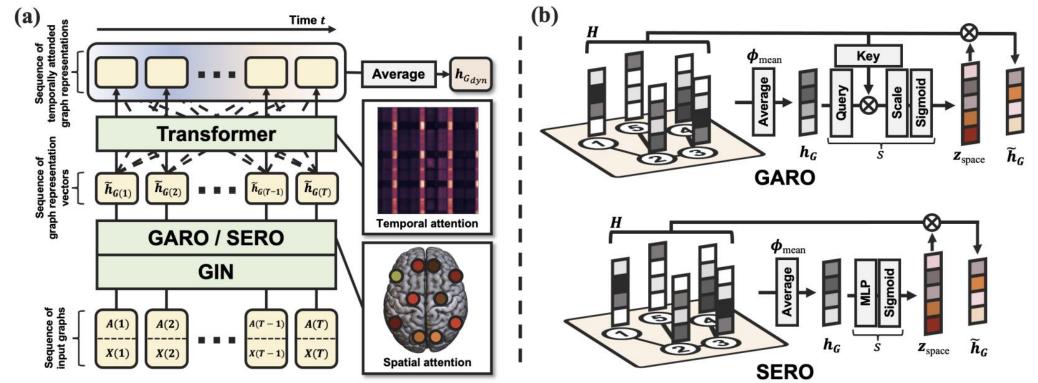
Naïve spatio-temporal approach

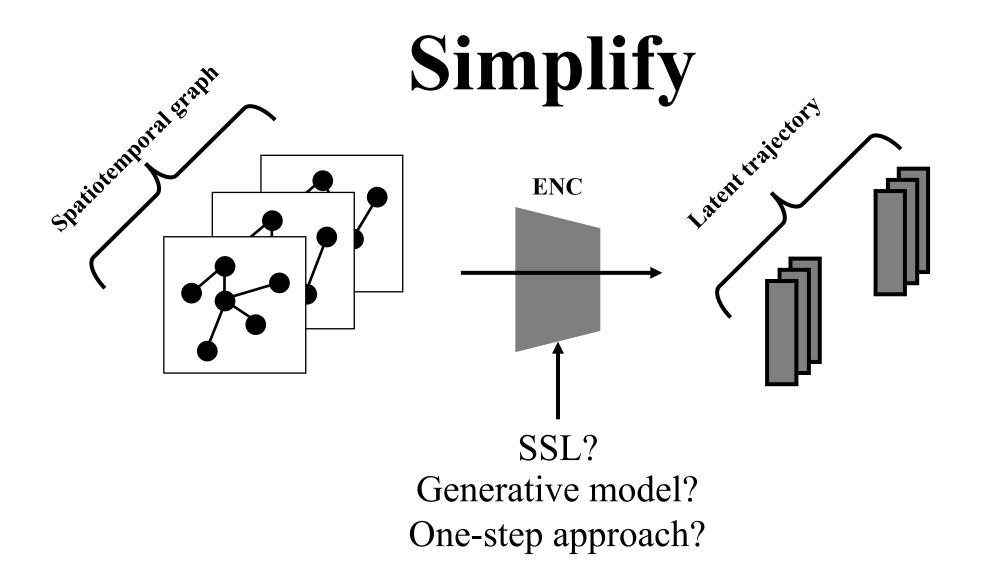


Image



Kim et al. (NIPS 2021)

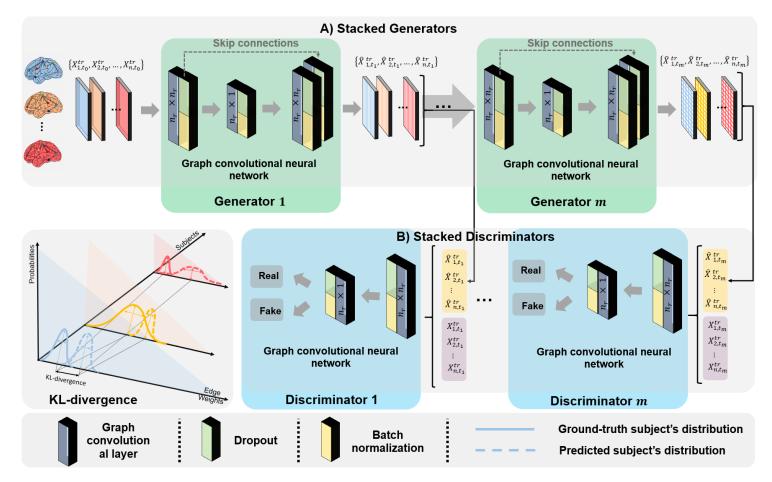


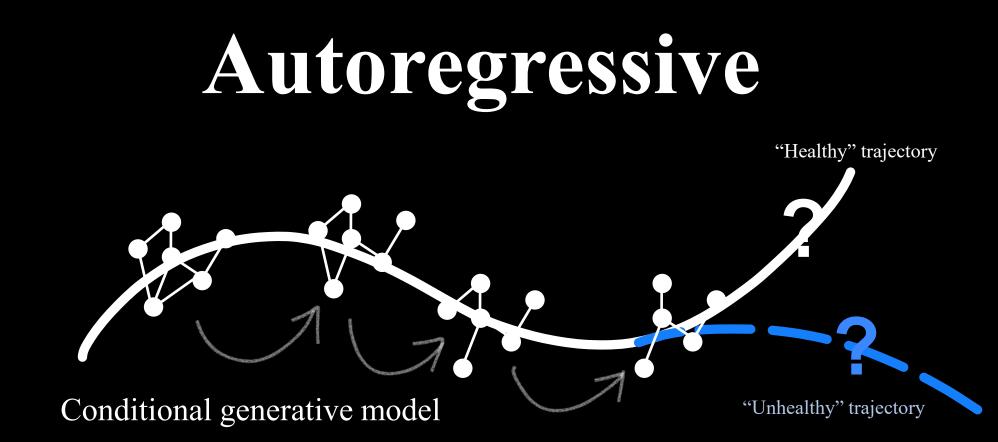


Shared encoder + TS model $f_{ENC}(G_{t+1})$ $f_{ENC}(G_{t+3})$ $f_{ENC}(G_t)$ $\mathbf{f}_{\text{ENC}}(\mathbf{G}_{t+2})$ Dynamics on latent space

Applicable to Spatiotemporal Graph Generation?

Autoregressive Nebli et al. (PRIME 2020)





 $\mathbf{G} = \mathbf{G}(\mathbf{G})$, Time, Demographic)

Converting forecasting problem to Conditional generation problem

Regazzoni et al. 2023 Apr

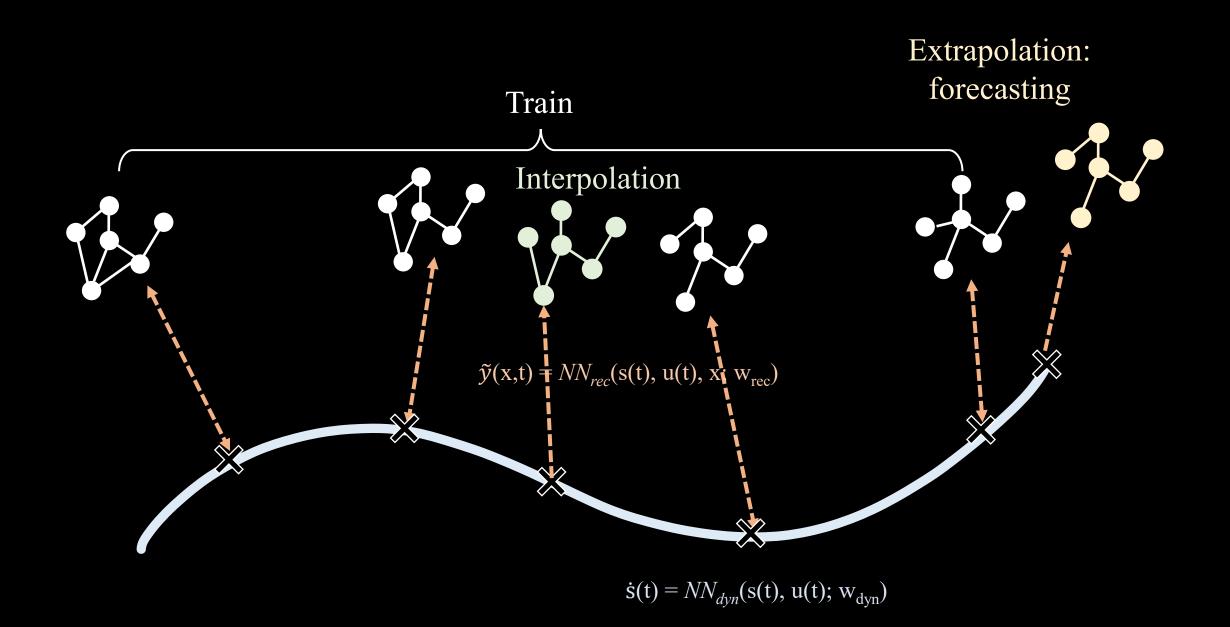
Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of spatio-temporal processes

Components

Latent Dynamics Model NN_{dyn}

Reconstruction(generative) Model NN_{rec}

 $\dot{\mathbf{s}}(t) = NN_{dyn}(\mathbf{s}(t), \mathbf{u}(t); \mathbf{w}_{dyn})$ $\tilde{y}(\mathbf{x}, t) = NN_{rec}(\mathbf{s}(t), \mathbf{u}(t), \mathbf{x}; \mathbf{w}_{rec})$



Remaining questions

$$\dot{\mathbf{s}}(t) = NN_{dyn}(\mathbf{s}(t), \mathbf{u}(t); \mathbf{w}_{dyn})$$
$$\tilde{y}(\mathbf{x}, t) = NN_{rec}(\mathbf{s}(t), \mathbf{u}(t), \mathbf{x}; \mathbf{w}_{rec})$$

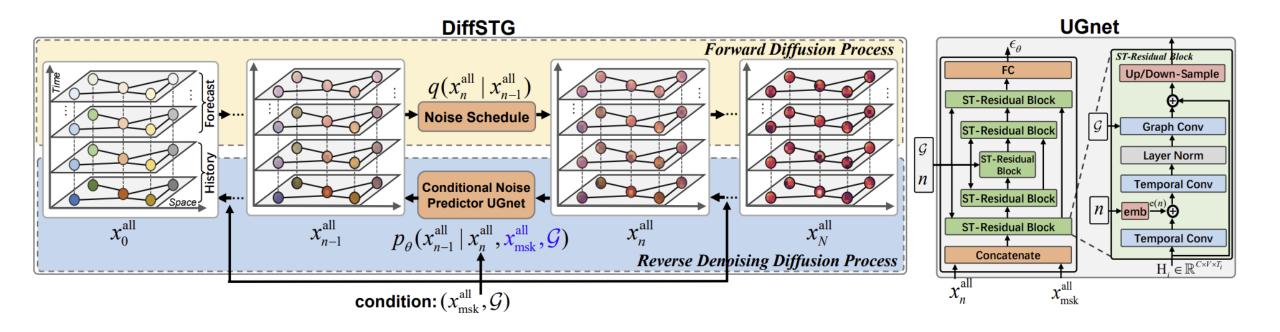
Select dynamics model: domain-specific? Select generative model: AE? GAN? Diffusion?

Graph Diffusion is gaining attention

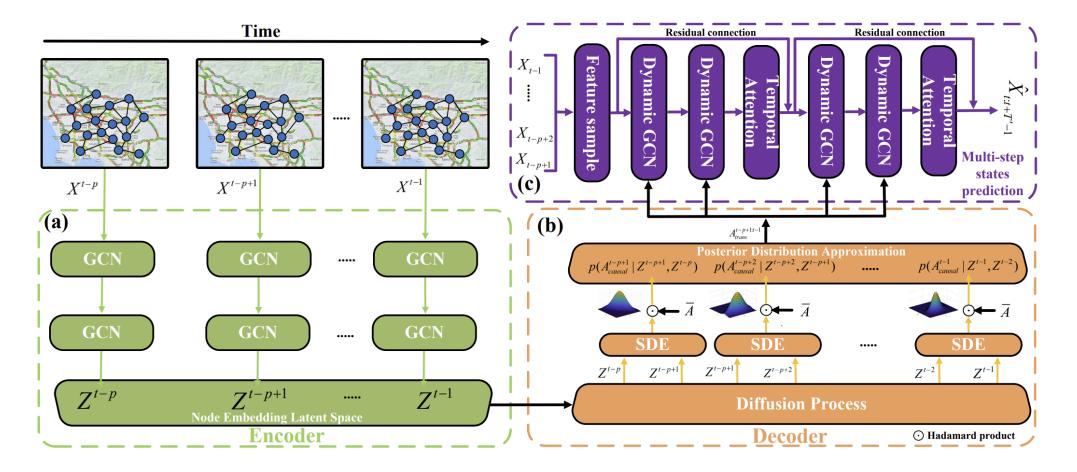
Brief introduction: Will be detailed @ GUG blogs ③

SMLD	DDPM	DDPM
EDP-GNN	DiGress	GRAPHARM
Upper triangular part of adj. matrix	Node feature & edge attribute	Row of adj. matrix (autoregressive)

Wen et al.(2023) **Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models**



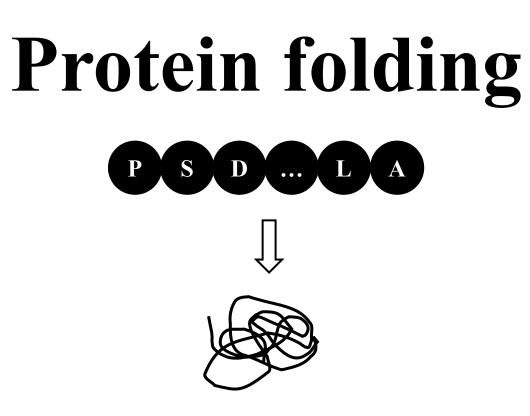
Liang et al.(2023) Diffusion-Variational Graph Neural Network(DVGNN) for Spatio-temporal Forecasting

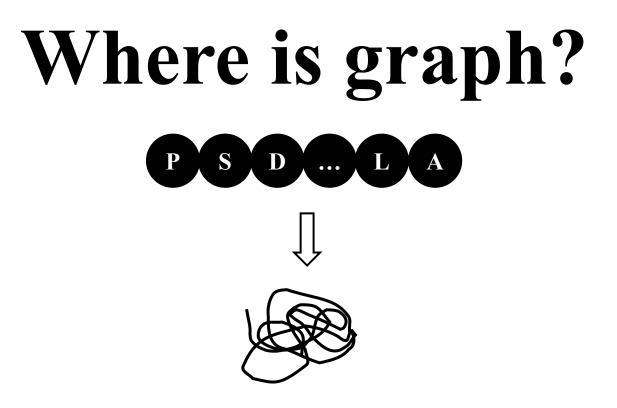


Questions, Please

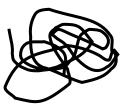
Appendix

AlphaFold RoseTTAFold

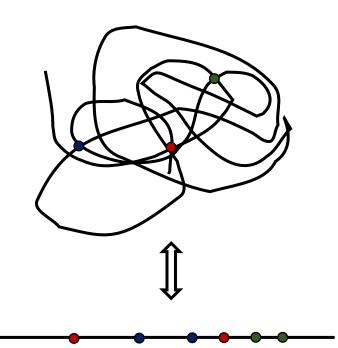




3D structure is graph

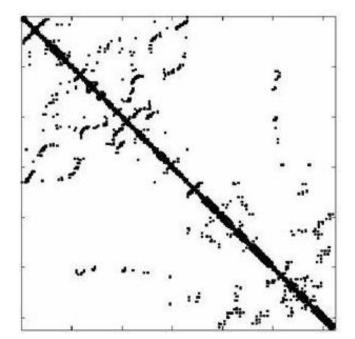


Contact Map Estimation

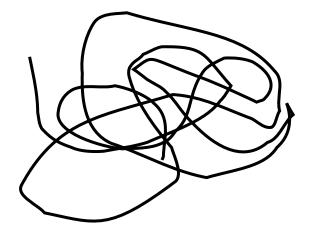


Not Isomorphism Machine Learning fills the gap: learning Riemannian manifold that protein contact map exists

Graph or Image: AlphaFold vs. RoseTTAFold



Is protein folding solved?

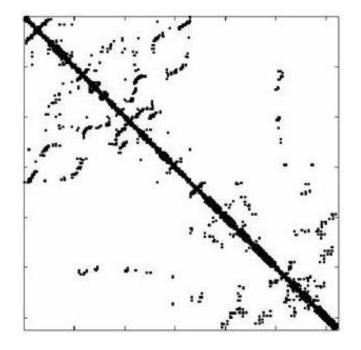


Estimation of 3D structure requires high-resolution contact map

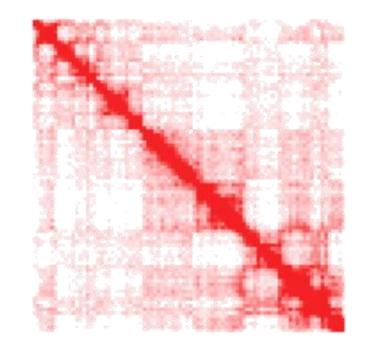
Given data Required Sparse Dense

Graph Super-Resolution!

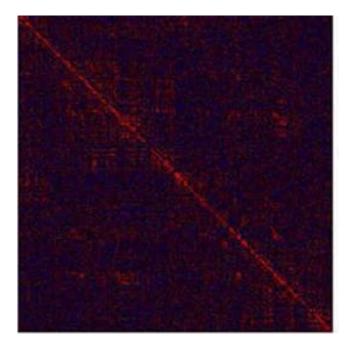
Analogy



Contact map of Protein

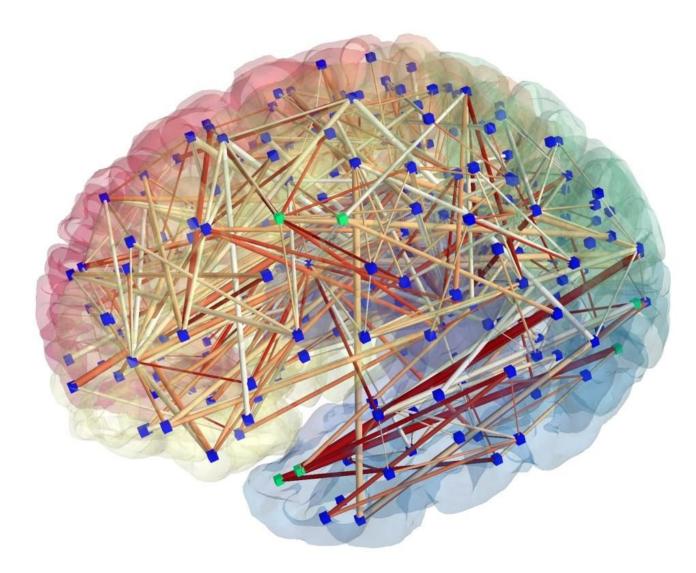


Contact map of Chromatin



<u>Connectivity matrix of</u> <u>Human Brain</u>

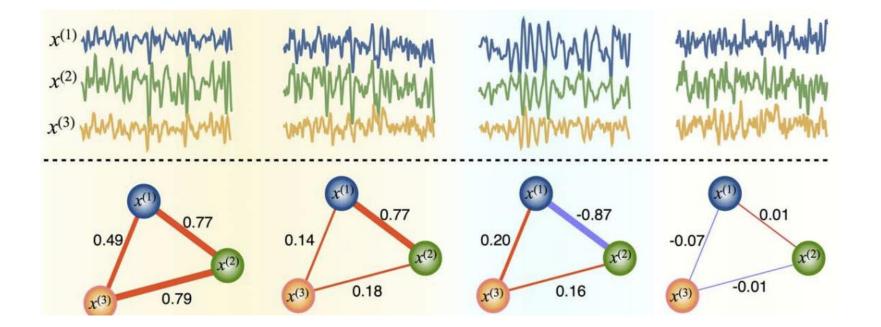
Dynamic graph: brain connectome



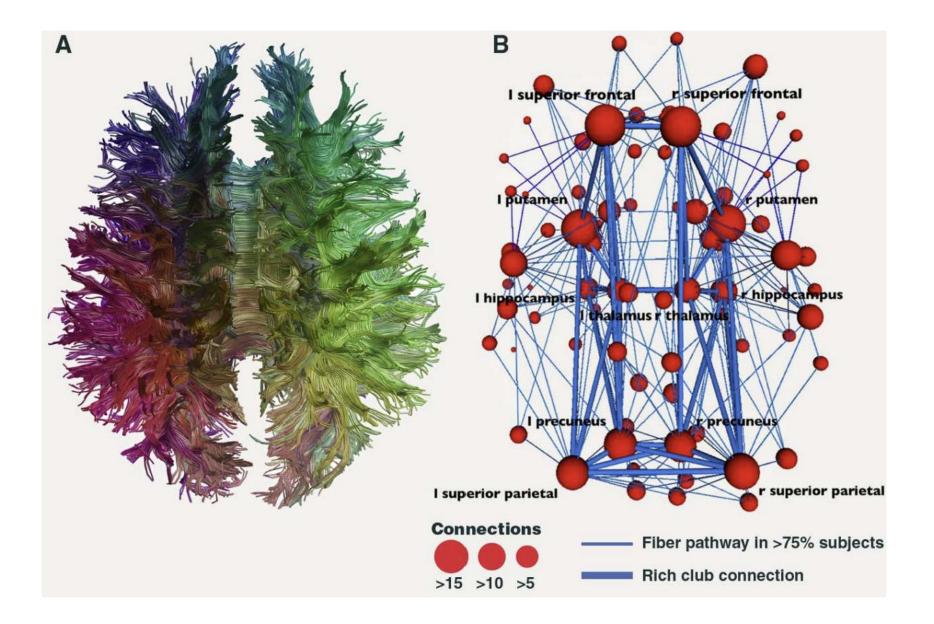
Signal (fMRI BOLD, EEG) ROI 100 MMM

How you will construct Graph with this data?

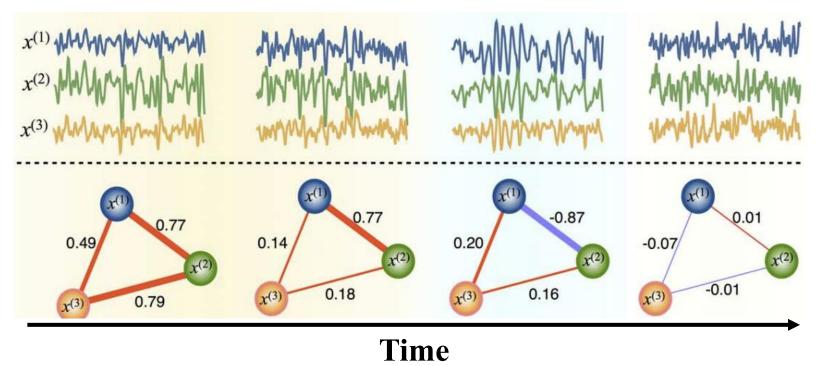
Correlation as graph weights

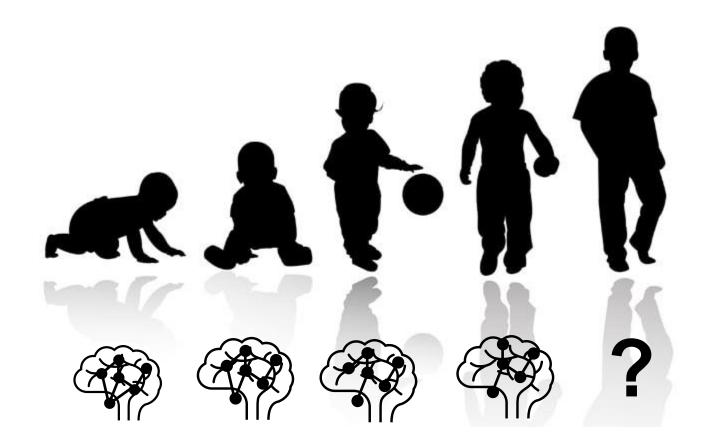


Weight of edge E(x(i), x(j)) = Corr(x(i), x(j))



Spatio-Temporal approach is natural





Spatiotemporal?

Brain ROI location matters
Brain development; time series of <u>graph:</u>
* <u>Differ with dynamic graphs</u>

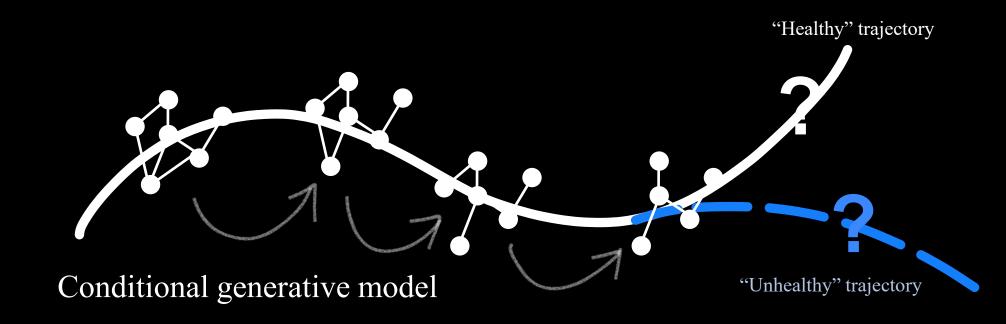
We argue

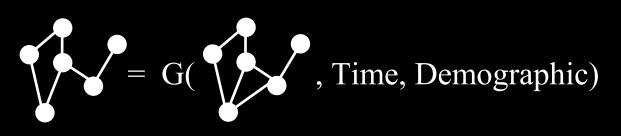
Graph generation naturally fits on series of graph; * in terms of predicting future graph dynamics

* not solving classification or regression problem

Usually more straightforward and information-rich.

Predicting future brain graph





Predicting future brain graph

Conditional generative model $G(\bigcirc, t, d)$ \leftarrow Brain graph Generative model $G(\bigcirc, t, d)$ \leftarrow Brain graph Temporal factor Demographic factor

Good match with diffusion model

Graph Encoder Latent Dynamics Model Graph Decoder **T-dependent encoder?** $f_{ENC}(G_{t+1}, t+1)$ $\overline{\mathbf{f}}_{\mathrm{ENC}}(\overline{\mathbf{G}}_{t+2}, t+2)$ $\mathbf{f}_{\text{ENC}}(\mathbf{G}_{t+3}, t+3)$ $f_{ENC}(G_{t}, t)$ Confined space

Graph Encoder Latent Dynamics Model Graph Decoder **T-dependent decoder?** $f_{\text{DEC}}(G_{t+1}, t+1)^{2}$ $\overline{\mathbf{f}_{\text{DEC}}}(\overline{\mathbf{G}_{t+2}},t+2)$ $\mathbf{f}_{\text{DEC}}(\mathbf{G}_{t+3}, t+3)$ $f_{DEC}(G_{t}, t)$ Confined space

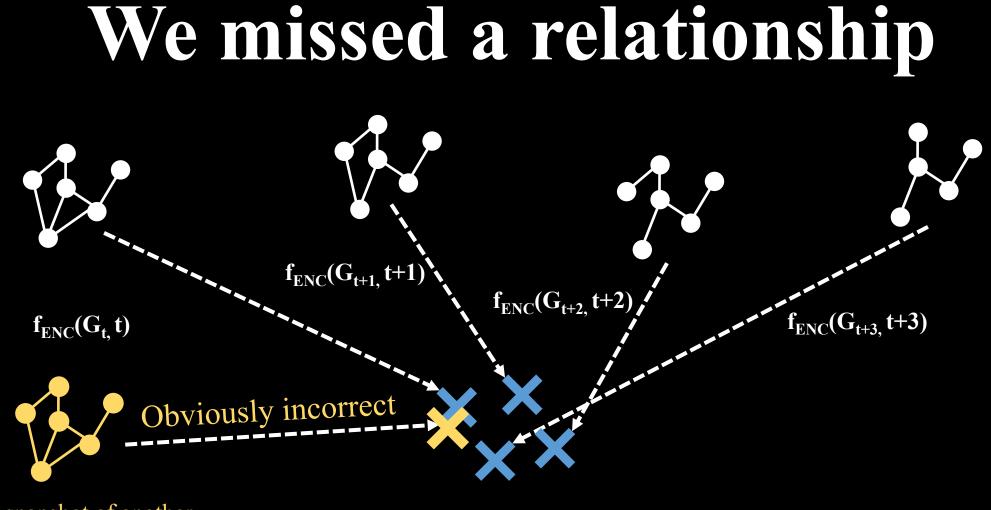
T-dependent enc/decoder

$$L = f_{ENC}(\sqrt{T}, T)$$

Conditional Generation

$$= \mathbf{f}_{\text{DEC}}(L, T), L \sim \text{Gaussian}$$

Encoder/decoder



Time **t** snapshot of another spatiotemporal graph