24 HIIESERE o

@ TigerGraph

TIGERGRAPH2I NEO4J & H|-E|-_._EE
Architect 2P’ 2|1 MAA-SEF

Who am |

A

 MegazoneCloud OCTO

« Graph Database Architect
« TigerGraph DB Specialist

« 01089489592

* myoungsig.youn@mz.co.kr
« jazzlian@gmail.com

mailto:Myoungsig.youn@mz.co.kr

Graph DB Ranking

Sep

1.
2.

"~ 4.
A 5.
W 3.
19,
8.
3 6.
3 7.
" 14,
s 10.
3 9.
$o12.
& 11,
B 13.
B 15.
17.
18.

Rank
Sep Aug
2023 2023 2022
1. 1.
2. 2.
3. 3.
4. 4.
5. 5.
6. 6.
7. 7.
8. 8.
S. 9.
10. 411,
11. § 10.
12. 12.
13. - 15.
14. Qo 13.
15. Q. 14.
16. 16.
17. 17.
18. 18.
19. #~20.
20. P 19.

3 16.

DBMS

MNeo4dj

Microsoft Azure Cosmos DB

Virtuoso
OrientDB
ArangoDB
Memgraph
GraphDB

Amazon Neptune

JanusGraph
MNebulaGraph
Stardog
TigerGraph
Dgraph

Fauna

Giraph
AllegroGraph
Blazegraph
TypeDB
SurrealDB
Graph Engine

EX: https://db-engines.com/en/ranking/graph+dbms

Database Model

Graph
Multi-model
Multi-model @
Multi-model
Multi-model
Graph
Multi-model
Multi-model
Graph
Graph
Multi-model @
Graph
Graph
Multi-model
Graph
Multi-model
Multi-model
Multi-model g
Multi-model @
Multi-model

Score
Sep Aug
2023 2023
50.39 -1.03
35.45 +0.45
5.38 +0.59
4.33 -0.36
4.29 -0.08
2.88 o0.00
2.60 -0.10
2.54 -0.13
2.39 -0.01
2.33 -0.01
2.28 -0.08
2.21 -0.10
1.89 +0.19
1.69 -0.10
1.65 -0.11
1.15 -0.10
1.02 -0.17
1.02 +0.02
0.87 +0.12
0.78 +0.02

Sep
2022

-0.

.09
.22
57
.48
74
.48
.07
.66
.25
.16
.61
.07
.41
13
.45
.02
13
.14

15

Graph Database
Infograph

OPERATIONAL
GRAPH DATABASES

DBMS products suitable for a
broad range of enterprise-level
transactional applications.

@ JanusGraph

d
-« QOrientDB
y

@neoy]
GRAPHS

REAL-TIME 4
BIG GRAPHS

Enables real-time large graph
analysis with both 100M+ vertex
or edge traversals/sec/server and

100K+ updates/sec/server.

@ TigerGraph

KNOWLEDGE
GRAPH / RDF
Provides a general method

for modeling of syntactic
and inference information.

an: Inc.

AIIegroGraph

Cal OPEN L INK

VIRTUOSO

r
bla@égraph
S~

O

Stardog

Encompasses databases designed
to support different model types.

.
‘ Azure Cosmos DB
M

@ ArangoDB
@sqrrl

ANALYTIC
GRAPHS

Focused on solving complex
analytical problems,
but not in real time.

-ﬁﬁGraphX

RDBMS + GRAPH

ORACLE GRAPH

CREATE PROPERTY GRAPH BANK_GRAPH

VERTEX TABLES (
BANK_ACCOUNTS
KEY (ID)
PROPERTIES (ID, Name, Balance)

)

EDGE TABLES (
BANK_TRANSFERS
KEY (TXN_ID)
SOURCE KEY (src_acct_id) REFERENCES BANK_ACCOUNTS(ID)
DESTINATION KEY (dst_acct_id) REFERENCES BANK_ACCOUNTS(ID)
PROPERTIES (src_acct_id, dst_acct_1id, amount)

)s

Get started with property graphs in Oracle
Database 23c Free — Developer Release

Oracle spatial and Graph

REM Check if there are any 3-hop (triangles) transfers that
start and end at the same account
SELECT acct_1id, COUNT(1) AS Num_Triangles
FROM graph_table (BANK_GRAPH
MATCH (src) - []->{3} (src)
COLUMNS (src.id AS acct_id)
) GROUP BY acct_id ORDER BY Num_Triangles DESC;

ACCT_ID NUM_TRIANGLES

918
751
534
359
119
677
218

N NN W W WwWWw

118 rows selected.

https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://en.wikipedia.org/wiki/Oracle_Spatial_and_Graph

SOL Server GRAPH

-- Create a GraphDemo database

IF NOT EXISTS (SELECT * FROM sys.databases WHERE NAME = 'graphdemo')
CREATE DATABASE GraphDemo;

GO

USE GraphDemo;
GO

-- Create NODE tables
CREATE TABLE Person (
ID INTEGER PRIMARY KEY,
name VARCHAR(100)
) AS NODE;

CREATE TABLE Restaurant (
ID INTEGER NOT NULL,
name VARCHAR(100),
city VARCHAR(100)

) AS NODE;

CREATE TABLE City (
ID INTEGER PRIMARY KEY,
name VARCHAR(100),
stateName VARCHAR(100)
) AS NODE;

-- Create EDGE tables.

CREATE TABLE likes (rating INTEGER) AS EDGE;
CREATE TABLE friendOf AS EDGE;

CREATE TABLE livesIn AS EDGE;

CREATE TABLE locatedIn AS EDGE;

EX: https://learn.microsoft.com/ko-kr/sql/relational-databases /graphs/sql-graph-architecture?view =sql-server-ver16

https://learn.microsoft.com/ko-kr/sql/relational-databases/graphs/sql-graph-sample?view=sql-server-ver16

SQL Server GRAPH

-- Find Restaurants that John likes
SELECT Restaurant.name

FROM Person, likes, Restaurant

WHERE MATCH (Person-(likes)->Restaurant)
AND Person.name = 'John';

-- Find Restaurants that John's friends like

SELECT Restaurant.name

FROM Person personl, Person person2, likes, friendOf, Restaurant
WHERE MATCH(personi-(friendOf)->person2-(likes)->Restaurant)
AND personil.name="'John';

-- Find people who like a restaurant in the same city they live in

SELECT Person.name

FROM Person, likes, Restaurant, livesIn, City, locatedIn

WHERE MATCH (Person-(likes)->Restaurant-(locatedIn)->City AND Person-(livesIn)->City);

-- Find friends-of-friends-of-friends, excluding those cases where the relationship "loops back".

-- For example, Alice is a friend of John; John is a friend of Mary; and Mary in turn is a friend of Alice.

-- This causes a "loop" back to Alice. In many cases, it is necessary to explicitly check for such loops and exclude the results.
SELECT CONCAT(Person.name, '->', Person2.name, '->', Person3.name, '->', Person4.name)

FROM Person, friendOf, Person as Person2, friendOf as friendOffriend, Person as Person3, friendOf as friendOffriendOfFriend, Person as
Person4

WHERE MATCH (Person-(friendOf)->Person2-(friendOffriend)->Person3-(friendOffriendOfFriend)->Person4)

AND Person2.name != Person.name
AND Person3.name != Person2.name
AND Person4.name != Person3.name

AND Person.name != Person4.name;

PostgreSOL + Apache AGE(BITNINE)

e Graph Database Plugin for PostgreSQL | creare extension age;
* Hybrid Queries (OpenCypher And SQL) | Loa 'age’;

* Fast Graph Query Processing

e Graph Visualization and Analytics
* CurrentPG13 support

SET search_path = ag_catalog, "$user", public;
SELECT create_graph('graph_name’);

SELECT *
FROM cypher('graph_name', $$

https://age.apache.org/ o) g:E’(‘lEa;t;f)Z‘;l {property:value})

SELECT *

FROM cypher('graph_name', $$
MATCH (v)
RETURN v

$$) as (v agtype);

SELECT *
FROM cypher('graph_name', $$
MATCH (a:Person), (b:Person)
WHERE a.name = 'Node A' AND b.name = 'Node B'
CREATE (a)-[e:RELTYPE {name:a.name + '<->' + b.name}]->(b)
RETURN e
$$) as (e agtype);

https://github.com/apache/age
https://age.apache.org/

NOSQL + GRAPH

Apache TinkerPop GRAPH

DES GRAPH

AOXI2 9|3t 23| = 0| Ef T

Spark connector

AEROSPIKE GRAPH

PayPal: Graph on Areospike

Applications using DS drivers Gremlin console web browser

GraphComputer §p

|
DataStax Studio
/

Gremlin Server

TinkerPop 3

4

4—| DSE Server

Spark

OLAP

TinkerPop3

OLTP

Database Layer - DSE Graph

Storage Backend - Cassandra Index Backend - DES Search

DataStax Enterprise

https://docs.datastax.com/eol/en/dse/6.0/dse-arch/datastax_enterprise/dbArch/archGraphTOC.html
https://product.kyobobook.co.kr/detail/S000061352345
https://aerospike.com/products/graph-database/
https://docs.datastax.com/eol/en/dse/6.0/dse-arch/datastax_enterprise/dbArch/archGraphTOC.html
https://aerospike.com/resources/videos/summit19/ty-paypal/

Amazon Neptune

Amazon Neptune High-Level Architecture

e 1 i
73 Neptune 3

d LS Notebooks o
& Workbench]

Identity graphs Fraud detection

ol Endpoints for both
= Gremlin and SPARQL
Jgremin Wy, query languages fsparg 1HE gﬁggjmng

IENEN LiLll INNEN] INNAN] INENNI

rRs H 73 H R5 Rs f

TTTTT TTTIT TTTTT TTTTT TTTTT —

.. andup to 15 /stream

Single ‘
Read Replicas ‘

Wiite Instance

o—| Instance
O=—| Stalus

High Performance Graph Engine (Durable, ACID with Immediate Consistency) -I- o—| Cluster &

Highly Resilient, Cloud-Native Storage Service
Istatus

)|
.. Sl

v \/
Gremlin &
= SPARGL
Query

" S Aulomated Backups Consumption Maodel fexplain Explainer
Eronplon aires e i bers P

¥

ZEX: https://aws.amazon.com/ko/blogs /industries/graphing-the-grid-on-aws/

https://aws.amazon.com/ko/neptune/?nc2=h_ql_prod_db_nep

Neo4J Deep Dive

Who is Neo4J?

Drivers and APls,
Connectors

Cypher Query Language,
GraphQL Library

Visualization
Meodj Bloom

Neodj Aura
AuraDB and AuraDs

-Neo0dj

Database
On-premises and cloud

Neodj tools
Meodj Browser, Neodj Data Importer,
Neodj Desktop, Meodj Ops Manager

Analytics

Graph Data Science

Figure 1. Overview of the Neo4j ecosystem

https://www.crunchbase.com/organization/neo-technology

Building Knowledge Graphs: A Practitioner’s Guide

https://www.crunchbase.com/organization/neo-technology
https://neo4j.com/knowledge-graphs-practitioners-guide/

Query Performance

« Cost-Base Optimizer
e Statistics

« Explain, Profile
 Vector Search

« Second Index
 Full Text Index

—_—— —- —_—- —- — —= —_— — —_ — = —

___________ P e)

Query Processor l
i e S S = sESlwer
| 11
| Query Parser | |
| |
| |
| i Query Optimizer ' |
| — o
- S S Samizems T _____ =1

Abstrct

Parser Syntax

Tree(AST)

Normalized

AST

Logical
Execution Execution
Plan Plan

Physical

Execute

Planner (Runtime)

EX: https://en-core.com/kor/board/notice?viewMode =view&ca=+tech&sel_search=&txt_search=&page=1&idx=101

Query Performance

Cypher Copy to Clipboard Run in Neo4j Browser

PROFILE

MATCH (p {name: 'Tom Hanks'})

RETURN p

o m e ———— +

[p

o e +

| (:Person {name: "Tom Hanks", borm: 1956}) |

B et et T +

T T T LT T LT T T T T T T T T L T T +

| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |

dmm e e e e e e e e m e e e mmme—mm———————————— +

| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 26 | 486 | 1 | 136 |

e e e +

tomm e L e T TP Fommmmmmm e tommmmm tommmmm oo R T Hmm e ommmm e e +
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |

B e L T TP L e R e e e T e T +
| +ProduceResults@neod4j | p | 8 | 1 | 3 | | | | Fused in Pipeline @ |
| | #==mmmmm e e o tomm e Fomm e o e R L +

| +Filter@neo4j | p.name = Sautostring_@ | 8 | 1 | 239 | | | | Fused in Pipeline @ |
| | #==mmmmm e e mmmm—— Fmmmmmm Fommm e —————— o e Fommmmmm e —— - +

| +AllNodesScan@neodj | p | 163 | 163 | 164 | 72 | 4/8 | 1.785 | Fused in Pipeline @ |
B ettt L Fom oo fommm e R e e Fomm e o Fommmm e B ittt +
1 row

EX: https://en-core.com/kor/board/notice?viewMode =view&ca=+tech&sel_search=&txt_search=&page=1&idx=101

IFA(Index-Free-Adjacency

Node Structure
l l 0 1 S 9 14 15
previous relationship for Shris 4Bytes 4Bytes 5 Bytes 1Byte
i for
startnode snd node isinUse p Re:;lloﬂsh\p Next Property ID Label Store future
use

!

Relationship Structure
.................... LIKES 0 1 5 g 13 17 21 25 29 33 34
I I 1 Byte 4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 1Byte

- - . : Firstin
n - q - First Previous First Next Second Previous | Second Next A
ch.
isinUse| First Node ID Second Node ID | Relationship Type Jip 1D . io 1D Relationship 1D | Relationship 1D Next Property ID Mafllgr

next relationship for

name: “Bob” start node end node name: “Alice”

v

age: 25

Figure 6-5. How a graph is physically stored in Neodj

Store File | Record size | Contents
neostore.nodestore.db | 15 B | Nodes
neostore.relationshipstore.db | 34 B | Relationships
neostore.propertystore.db | 41 B | Properties for nodes and relationships
neostore.propertystore.db.strings | 128 B | Values of string properties
neostore.propertystore.db.arrays | 128 B | Values of array properties

I I

Indexed Property Each index entry is approximately 1/3 of the average property value size

EX: https://en-core.com/kor/board/notice?viewMode =view&ca=+tech&sel_search=&txt_search=&page=1&idx=97

Architect

Programmatic APls for
accessing the graph { Traversal API] Cypher
[Core API J
B . *
Object cache
Two caching options HA
available to improve .)
performance) L
Filesystem cache
Store files that contain [y Tmfﬁaﬂiﬂﬂf
various aspects of the Record files logical logs
graph structure L)
Physical disks (such
as spinning disks, S50s) Disks
upon which graph data

files are stored
* Only available in Neodj Enterprise Edition

Figure 11.1 High-level overview of the Neodj architecture

High Availability
functionality providing
ability to scale and
survive hardware
failures

Files containing
committed
transactions, used
to ensure ACID
compliance and
provide the ability
to restore and
recover the DB
when required

: S
i emory
Off-heap /wﬁ,__ e
[|
Page Cache '

Cached graph data (and indexes)

Direct Memory
Buffer poots, NIO buffers, Socket
Buffers (receive / send)

JWM Internals .
Thread stacks, Codecache, j52)
Metaspace / PermGen, GC, etc

Max Heap (-Xmyx) !
Query execution, graph management,
transaction state® :

Neodj

Physical

Memory

H/A Architect

Cluster
management

.

Transaction
management

Database

Meodj HA
instance 1
(slave)

management

Transaction
management

'

Running Meod| in HA mode

requires that there is always

a single master, and zero or
more slaves configured.

Database

Cluster
management

Transaction
management

Database

Meodj HA
instance 3
(slave)

MNeodj HA
instance 2
(current master)

e

M

Meodj has implemented
its own Paxos-based cluster
manager, which is responsible
for handling all cluster-related
tasks, such as master election,
instances automatically joining
or leaving a cluster,
and so on.

—l—-—
Propagation of data

Figure 11.5 Sample Neod] HA cluster setup with 1 master and 2 slaves

H/A Architect

+ ClientZ7f MasterOf| Al 27| 2 2 H HL|C}

ClientZt SlaveO| Al 27| 2 H &

2L Ct

management

Neodj HA
instance 1 Database
(slave) =

Neodj HA
instance 2

‘ ‘
| management R
Q) | e [

L o (current master)

Client sends write request to a master ...

o Client issues a commit.

e Master acquires lock and applies the
transaction as per normal non-transaction
rules to the master DB instance.

@ Master consults ha.tx_push_factor setting
and attempts fo optimistically push change to
n (default 1) configured slaves—but if this fails,
(2) still succeeds.

Slave ensures it is up to date first, and if not,
pulls any outstanding fransactions from master.

@ Slave applies fransaction locally.

In the background ...

@ Slave consult ha.pull interval
setiing to determine iffwhen to pull
updates from the master (default is
not to pull updates regularty, only
during write fransactions).

@ When interval is in range, any new
transactions are pulled from the
master and applied locally to
the slave.

Figure 11.8 Sequence of events when a write request Is sent to the master instance

Neodj HA
instance 2
(current master)

12-0

Transaction
management
-, 3

Transaction
management

Database

Client sends write request to a slave ...

° Client issues a commit.

@ Lock is acquired on master database.

@ Lock is acquired on slave database.

As part of its intemal protocol, slave ensures
it is up o date first, and if not, pulls any
outstanding transacfions from master.

o Update is committed to master.

° Provided master commit was successful,
local slave transaction is also commited.

In the background ...

Slave consults ha.pull_interval
setting to determine iff'when to pull
updates from the master (default is
not to pull updates regularly, only
during write transactions).

@ When interval is in range, any new
transacfions are pulled from the
master and applied locally to
the slave.

Figure 11.9 Sequence of events when a write request Is sent to a slave Instance

Sharding

H Object cache

Load balancer

Requests for A- Req uests for B-
related nodes related nodes

Neodj JVM heap

" HAinstance 2

Meodj VM heap
Object cache

G
H
@0‘6

Free RAM
Filesystem cache

Other & fragments
containing A-related
nodes

Free RAM
Filesystemn cache
Other | [~ File fragments b

fragments ||| containing B-related
accessed nodes

fragments

accessed
Physical disk
[Z rmdesIC nodes{_ A-related mdasj
[Y nodes|X nodes| B-related nodes]
[W nodes]

Figure 11.10 Cache sharding

Physical disk

[Z nodes (C nodes A-rehted nodes]
[‘r rlodesl){ mdesKB-f&hﬂd nades:}
W nodes]

e m———

TIGERGRAPH Deep Dive

Who is TigerGraph?

We provide advanced analytics on connected data

o The hyper-scalable graph database for the enterprise

Foundational for Al and ML solutions

D esigned for efficient concurrent OLTP and OLAP workloads (HTAP)
SQL-like query language (GSQL) accelerates time to solution

Cloud Neutral: Google GCP. ©) Microsoft Azure A ,Amazon aWS

Our customers include:

o The largest companies in financial, healthcare, telecoms, media, utilities
and innovative startups in cybersecurity, and ecommerce.

0O O O O

https://www.crunchbase.com/organization/tigergraph

Graph-Powered Analytics and Machine Learning with TigerGraph

https://www.crunchbase.com/organization/tigergraph
https://info.tigergraph.com/oreilly-book-4

Data Loading Time and Speed, Size

Graph500 - loading

40
30
o
E
B
2 2
B
3 N Normalized Database Size
®
a 8 Raw Data
2 1
ﬁ 0 B TigerGraph
Neo4j
e@"}\ . [])
«\6"‘ 5.21 [Neptune
B JanusGraph
w
o . B ArangoDB
Twitter - loading %
60 o
[+
2
40
0

20
graph500 twitter

Data set

Relative Data Loading Time

K-Neighborhood Query Time

One-Hop Path Query

B0

m graph500 m twitter 69

60

: Three-Hop Path Query —
4477 4497

20

query response time, normalized

=
0 o
1000
) N el Q‘(\ o' o 8
s P @ S o £
*‘\QF" ‘\GQ ‘\GQ ba(\\}se N@“g gﬁqo '6 125
c 100 44
(3]
E
» 5 6 5 6
Two-Hop Path Query g 1e
@ 1 1
w
- w W graph 500 m twitter 337/ g g . .
N) 4
= a0 3 Q¢ o (\3\ (\"3’ o
E o (\ge&,\’b $e Qe Q\\) \AQQ\\) p(\\)eg(b
€ 200
g W graph500 W twitter
@ 100
-
>
g
o

i MR Sa(\“" o P@OQP

Weakly Connected Component and PageRank Queries Time

(A) Weakly Connected Components

- - 730
L
N
£ 600
2
g 400 1000 o
= 144
% 200
§ 1 16 s
a o
@ . < 750
§ = . E
< =
% (\'BQ‘\ \.\eob‘\ (@Q‘c\ Q% ' g% © =
S RS <O AP oS 8 535.5
o ‘ﬂ\c.’l 5-3(\ P&{a wa“‘ § ®
@ 500
&
g
(B) PageRank e 263:4
g ® 209.1
e 2500 2086 ® 250 1448
(1 . .
N z
C_EU 2000 ®
2 isoo
o 0
,,E 100.0 oo 2 4 6 8
@ Ei6 Number of Machines
5 ' 1.0 2.4 9.5
&
o 0.0
E & o ‘S‘E'OM 56"@“ 09% ‘ oﬁ)% ®
= Q% o> e &9

The TigerGraph Difference

Real-Time Deep-Link Querying

5 to 10+ hops deep

Handling Massive Scale

29999
¢ »

In-Database Analytics

Native Graph design

C++ engine, for high performance

Storage Architecture

Distributed DB architecture

Massively parallel processing

Compressed storage reduces
footprint and messaging

GSQL: High-levelyet Turing-
complete language
User-extensible graph algorithm
library, runs in-DB

ACID (OLTP) and Accumulators
(OLAP)

Uncovers hard-to-find patterns
Operational, real-time
HTAP: Transactions+Analytics

Integrates all your data
Automatic partitioning

Elastic scaling of resource usage

Avoids transferring data
Richer graph context

In-DB machine learning

Property Graphs - Types and Properties

Liked (Undirect Edge)

Person

id: 7
email: vbarracks6@utexas.edu
username: vharracks6

name: Virgie Barracks
join_date: 2021/09/02

id: 1025

by user: 19

liked_post: 12 liked_date:
2021/07/11

Post

id: 12

content: Suspendisse ornare ...

posted date: 2020/07/31
posted_by: 7
deleted: False

mailto:vbarracks6@utexas.edu

) @® carl.boudreautigergraph.com — tigergraph@3965f2753afa: | — com.doc...

g [# su tigergraph]
Operational A+ gergraph3965f2753afa: /$ gadmin status]
Historical Dati , ; } +
l:@] loT Signals [| | ' alytics
E] Orders | | Online | Running |
(f}) payments | | | Onl;ne I Runn%ng | e

| | Online | Running |
&"'ﬁ shipments | | | Online | Running I ilization
3 : | | Online | Running |
Q Invoices | | Warmup | Running |
o] visits | | Warmup | Running | Intelligence
| | Online | Running |
ij Downloads | | Online | Running |
| | Online | Running | i erorts
| | Online | Running |
Master D . .
ata | | Online | Running [farehouse
R customer | | | Online | Running |
- : | [Online | Running |
@ Supplier | | Online | Running | pata Stores
R Employee I i Online { Running :

' Online Running

(1) pevice | | Online | Running |
tigergraph@3965f2753afa:/$ I

TigerGraph Architecture

Operational and
Historical Data

L

loT Signals

@

Orders
Payments
Shipments
Invoices
Visits

Downloads

CcOE® >m

Master Data
R Customer
*é‘ Supplier

8 Employee

(L. Device

RESTful Visual GSQL
APIs Design Ul Queries
GRAPH USER
QUERIES GSQL
— O B sovio | onaon | sewves
.DBS é.u.u.u.E RES"’FP
: Message
M ¢ Queuing :
: Apache Kafka : >
i zookeeper
Iy stream I @ TigerGraph
L) Files [l
: Graph Storage i Graph Processing
Engine GSE i Engine GPE
—
B OO &8 &
i Graph Data Indexing ID :i Parallel Query Data Snapshot

Storage Service :: Processing

Analytics
Machine Learning
Visualization
O Business Intelligence
Dashboard Reports
Data Warehouse

Master Data Stores

Query Processing workflow

Query Name,
parameters,

A 4

Nginx

vertexes
Request

Query Result

» Incoming

» Outgoing

External GSE(IDS)
Vertex ID
Translated
| Restep Internal
VertexID
Query Name,
Parameters
GPE Process Query Logic....
Translated
External GSE(IDS)
Combined
Response
< Internal
Vertex ID
In Response
Response GPE

Data Ingestion

Step1

Loaders take in user source

Bulk load of data files or
a Kafka stream in CSV or
JSON format

HTTP POSTs via REST
services (JSON)

GSQL Insert commands

Dispatcher takes in the data
ingestion requests in the form of
updates to the database.

1. Query IDS to get internal
IDs

2. Convertdata to intemal
format

3. Send data to one or more
corresponding GPEs

Each GPE consumes the
partial data updates,
processes itand puts it on
disk.

Loading Jobsand POST use

UPSERT semantics:
o If vertexfedge doesn't
yet exist, create it.
o If vertex/fdge already
exists, update it.
e No Duplicates

TigerGraph Native Graph Storage

, Tom, 27, tom@a

1234321, 1234322, 2020-04-23, 3.3

1234321, 1234324, 2020-02-13, 2.3

IDS: Bidirectional external ID to Internal ID
mapping

Vertex Partitions: Vertex internal ID and attributes

Edge Partitions: Source vertex internal ID,
target vertex internal ID, edge attributes

mailto:john@abc.com
mailto:tom@abc.com

Distributed Native Graph Storage

' ID
Data of different 1392273 () IDS
components are split @) VERTEX
into segments.
(] EDGE
N
d%& N D I A
A JC2)C3) (13] 14][15] The segments are stored
g 4 J)(5)C6) L L lro J[17)(18] distributedly across the cluster.
e —
(e JC2)(3] L7Js Pl 9] (13 714 J[5] The segments of different components with
[—] [j’-] [—] = same ID stores data for the same set of
w \10_!_/12/ \lw‘ w vertices under the same vertex type.
(1 J(2]J 3] (7] 8 J[9] (13) 14][15] _
- The location of a vertex can be
W/ % wy calculated based on its internal ID
Server1l Server 2 Server 3

Data Ingestion in Distributed Cluster in Distributed

Server Mode

Incremental Nginx
Data
CSV/BON

GSE(IDS)

ID Translation

Restpp

Insert/Update/Delete
Vertices and Edges

3
Kafka Cluster w

T

N ~
GPE = = GPE- GPE
Synchronize
I . data to disk
ncoming Disk Disk Disk
SCTVEeT 1 2CIvVeETl 4 2€Tver o

Listen to
corresponding
topic for new
messages

In-memory
copy of data

Data Ingestion in Distributed Cluster in Single Server Mode

GSE(IDS)

ID Trhnslation

Incrgmtental | Nginx Restpp
= CSV/BS 0N —— — N Insert/Update/Delete
/ | Vertices and Edges
: Listen to

> D corresponding
Kafka Cluster W W W topic for new
messages

\\ GPE GPE GPE In-memory
copy of data
Synchronize .
|) data to disk
neoming Disk Disk Disk

» Outgoing

Server1 Server2 Server3

MPP - Distributed Cluster in Single Server mode

Server 1

Server 2

Single Server Mode

Server 3

Single Server Mode

e The cluster elects one
server to be the master for
that query.

e All query computations
take place on query master.

e Vertex and edge data are
copied to the query master
as needed.

e Best forqueries withone or
a few starting vertices.

MPP - Distributed Cluster in Distributed mode

Server 1

=

Distributed Query

Y

@@ communication @@ communication
@@ communication

Server 2

L

Distributed Query
(Master Node)

<

Server 3

o@ j‘

<

Distributed Query

!

Distributed Mode

e The server that receives the
query becomes the master.

e Computations executeon
all servers in parallel.

e Global accumulators are
transferred across the
cluster.

e |If your query starts from all
or most vertices, use this
mode.

MPP mechanism

Single Server mode VERSUS Distributed mode

Serv Server 2 Server 3
iko 7 % g@ 52
A}

Single Server Mode

Tl

Server3

Single Server Mode is better when

2. Modest number of vertices/edges are traversed.
3. Heavy usage of global accumulators.

Ex: Point query, single entity-based transactionipdate

~N
Distributed Qui Distributed Query Distributed Query
(Master Nqde)
e @
chmmunigation ommunication

1. Starting from asingle or small number of vertices.

Distributed Modeis better when
1. Starting from all or a large number of vertices.
2. Very large number vertices/edges are traversed.

Ex: Mostgraph algorithms & global analytics
(PageRank, Closeness Centrality, Louvain Community,
etc.)

TigerGraph Memory Usage Overview

TigerGraph Memory
A

Global Accumulators
(Global Copy/Local Copy)

CE—

Local Accumulators

Shuffled
Partitions /Accumulator
S

Current Activated Vertex Set

Upserted Vertices/Edges

Query Memory

[
Query 1 Query 2
| snapshot | snapshot
Query 3
snapshot
GPE GSE(IDS) | Msc | idle
Graph Partitions Elﬂ'directiona
ID
Mapping
Graph Updates
W
Y

System Memory

Data Encryption & Data Compress

e EncryptedDataatRest

o Choice of encryption levels (file, volume, partition, disk)

m Kernel level: dm-crypt cryptsetup
m Userlevel: FUSE (Filesystem inUser Space)

o Automatically encrypted in TigerGraph Cloud

e Encrypted Data in Transit
o Cansetup SSL/TLSforHTTPS protocol

o Automatically encrypted in TigerGraph Cloud

e Compressed Data
o Can Compress Data
o Lz4, Snappy, etc

NON-FUNCTIONAL
FEATURES

e High Availability

e Access Control & Security
e Transaction Management

TigerGraph Distributed Database Architecture

Simple setup, Performant design

e Setup:Just tell TigerGraph how many servers.
e TigerGraph seamlessly distributes data.
e Users see a single database, not shards.

Al Real-time active
replication

~
for High
Y N Y Y Y| by

> e writetoall
[]

df
AL 2L 28 2L

consistency

Advantages:

Simpleto setupand
manage

Unlimited scale-out;
simple toexpand

Scalable OLAP:
massively parallel
processing

ScalableOLTP:
concurrent ACID
transactions

Economical

High Availability

e TigerGraph HA Replication provides both Increased Throughput and Continuous
Operation

e C(Cluster size = P X R (Partitions x Replicas)

e Any cluster size is allowed, except 1x2

P = Partitioning Factor

A
f \

59 999 |
A A A A

HA and Concurrency

e Each server has T available workers for serving requests (GSQL query, REST POST,

etc.)
T is a system configuration parameter, defaults to 8. Consider number of CPU cores.
e Cluster's total number of workers = TxPxR, eg.8x5x2 =80
o A point mode query uses 1 worker.
o A distributed mode query use P workers.

P = Partitioning Factor
AN

N
S5A|

: 1A 2A 3A 4A
29 9 9 Y

> R = Replication Factor
1B 2B 3B 48 5B
ALl IR L)

HA and Concurrency

P1 P2 P3 P4 P5

R1 R2 R3 R4 R5

HA and Concurrency

Worker Processors = 8x65x2 = 80

HA and Distributed Storage

HA cluster

An HA cluster needs at least 3
server machines, evenif the

system only has one graph
partition.

Machines can be physical or
virtual.

Distributed
System

For a distributed system with
N partitions (where N > 1), the
system must have at least 2N
machines.

HA Read and Write Behavior

All Replicas are Read/Write, always in sync with the latest updates

Writes go to all replicas (e.g.both 1A and 1B).
Reads can be from any one replica (e.g. either 1A or 1B).

Distributed queries can mix replicas (e.g. {1A,2B,3B,4A,5B}

is a valid active set for a request.)

P = Partitioning Factor

AN
4 A\

5A

wlA w2A @EBA ®4A @

wlB mZB %38 ®4B @58

R =
Replication
Factor

HA Continuous Operation

e If any single serveris unavailable (expected or unexpected):

o When it fails to respond after a certain number of tries, requests will
automatically divertto another replica (e.g. 3B is unavailable, so use 3A)
o If it fails in the middle of a transaction, that transaction might be aborted.
e System continues to operation, with reduced throughput, until server is restored.

P = Partitioning Factor
AN

-

~

5A

‘qiblA ‘ithA ‘H‘Jﬂ\ ‘1,bZU\ ‘1’»

1B 2B 3B 4B >B
s AR AR R AR

R =
Replication
Factor

Distributed Data for Massive Datasets

e Graph DB ispartitioned across multiple server nodes.
Default partitioning scheme: uniformhash for load balancing

O

e RESTPP acts as scheduler and distributor.

e For ACID:

Transactions are not committed until all partitionsare updated — Strong Consistency

o

<

>

RESTPP

Partition 1

=

RESTPP

o~

=

Partition 2

RESTPP

Partition 3

HA, without External Load Balancing

e One RESTPPIis chosen as the master, for load balancing decisions.
e Default scheduling scheme isround robin.

< I I I

= 21 8

Replical Replica2 Replica3

HA and Distributed Hybrid Storage

» System has both distributed and HA storage

< [| | [[I >

[RESTPP | ||[RESTPP | ||[RESTPP | ||| RESTPP | ||| RESTPP | ||| RESTPP |
Partition 1 Partition 2 Partition 3 Partition 1 Partition 2 Partition 3

Replical Replical Replical Replica2 Replica2 Replica2

HA, with External Load Balancing

e User selects an external load balancing component/service.

< I I I I >

L

2 g2 22

Replical Replica2 Replica3

@ TigerGraph

NON-FUNCTIONAL
FEATURES

e High Availability
e Access Control & Security
e Transaction Management

Role-Based Access Control

e FollowsSQL approach forroles.
GSQL:
GRANT <role> ON GRAPH <graph> TO <userl, user2, .. >
REVOKE <role> ON GRAPH <graph> FROM <userl, user2, .. >

e Can map TigerGraph roles to external LDAP roles and groups.

Admin Portal Ul for Managing User Privileges

ﬁa AdminPorta

83 Dashboard

My Profile Al Role Management

MyThirdGraph Search user

E License
o User

= Proxy Group

MultiGraph for RBAC and Data Sharing

e Share & Collaborate

o Multiple groups share one master . .
database “)’4 TigerGraph MultiGraph
= data integration, insights, productivity OneiiiasterGIApt ShArsEmPnvALGiDeTa
" Product Dept. " SHARED \\‘ Customer Dept. ™

o Real-time, Updatable
o Shared updates, no copying
= cleaner, faster, cheaper, safer

-
- ————— - - - -

e Fine-Grained Security
o Each group is granted its own view
o Each group has its own admin user,
who manages local users’ privileges.

Roles and Privileges

Built-In Roles:

° Admin privilegeson all graphs. Create global vertex & edge
types, create multiple graphs, and clear the database.

° Designer privileges, + create/drop users, grant/revoke roles for
its assigned graph. That is, control existence & privileges of its local
users.

° Designer privileges + create global schema, create
objects.Also, delete graphs w hich they created.

° Query writer privileges + modify the schema, create loading
jobs forits assigned graph.

° Query reader privileges + create queries and run data-
manipulation commands on its assigned graph.

° run existing loading jobs & queries forits assigned graph.

User-Defined Roles in version 3.2 above

Status

User
Management

Schema
Design

Loading and
Querying

Ls

Create/Drop User

Show User

Alter (Change)

Password
Grant/Revoke Role

Create/Drop/Show
Secret

Create/Drop/Show/
Refresh Token
(Deprecated)

Create/Drop
Vertex/Edge/Graph

Clear Graph Store
Drop All

Use Graph

Use Global

Create/Run Global
Schema_Change
Job

Create/Run
Schema_Change
Job

Create/Drop
Loading Job

X

q; TigerGraph

NON-FUNCTIONAL FEATURES

e High Availability
e Access Control & Security

e Transaction Management

Transactional Model

e The TigerGraph distributed database provides full ACID transactions with
sequential consistency

e Transactions definition:
o Each GSQL Query procedure is a transaction. Each query may have

multiple SELECT, INSERT, or UPDATE statements.

o Each REST++ GET, POST, or DELETE operation (which may have
multiple update operations within it) is a transaction.

ACID Compliance

Atransaction with update
operations may
insert/delete multiple
vertices/edges or update
the attribute values of
multiple edges/vertices.

Suchupdate requests are
“all or nothing”: either all
changes are successful, or
none is successful.

Single-server
Consistency:

A transaction obeys data

validationrules.

Distributed System
Sequential Consistency:
Everyreplicaofthe data
performsthe same
operationsin the same
order.

Isolation Level

Repeatable Read:
e Eachtransaction
sees the same data.

No Dirty/Phantom Read:
e A transaction's
updates arenot
visibleto other

transactions until the

update is committed.

Durability

The TigerGraph platform
implements write-ahead
logging (WAL) to disk to
providedurability.

Logs are consumed
periodically to update
the databaseon disk.

GSQL Queries

* Exploring data using GraphStudio can be interesting, but there are limitations
* GSQL queries however give the most flexibility when interacting with a graph

* A GSQL query is auser defined procedure
o There can be one or more input parameters

o It can produce data in two ways, by returning a value or by “printing”

Query Running Modes

Queries can be run in Interpret Mode or as Installed queries

* Interpret mode does not require the query to be compiled or installed, the trade
off is that aninterpreted query is not as efficient as an installed query. There
are also some limitations in functionality for queries run in this mode

* Installed queries have no such limitations and become accessible as reachable
endpoints

The Basics

resultSet = SELECT vSet
FROM (edgeSet| vertexSet)

[whereClause] [accumClause]
[postAccumClause] [havingClause]
[orderClause] [limitClause] ;

+ FROM: select active vertices & edges.

* WHERE: conditionally filter the active sets

+ ACCUM:iterate on edge set, compute with accumulators

« POST-ACCUM:iterate on vertex sets; compute with accumulators
* HAVING: conditionally filter the result set

- ORDERBY:sort

* LIMIT: max numberof items

* SELECT:result from sourceortarget set

FROM

'

WHERE

!

ACCUM

v

POSTACCUM

v

ORDERBY

UMW

v

{
(
[
(
(A
{
(
(

SELECT

The Basics

GSQL traverses the graph from one set of vertices, through selected edgesoriginated from the
starting set, to another set of vertices:

cardiac
electrophysiology,

0-@

@
O
O
O
@

raphy

0090000 @®

The Basics

CREATE QUERY getKhopNeighbor(int k, vertex input) FOR GRAPH MyGraph ({

OrAccum<BOOL> @visited;
ListAccum<EDGE> @@edgelist;

start = {input};

WHILE start.size() > © limit k DO
start = SELECT t from start-(:e)-:t
WHERE t.@visited == false
ACCUM @@edgelList += e
POST-ACCUM t.@visited = true;
END;

print @@edgelist;

The Basics

The query always starts with a seed vertex set - that
logic originates from

Start from a single vertex:

CREATE QUERY example(VERTEXinput ver) FORGRAPH g {
start_set = {input_ver};

Here start set is the variable
name of vertex set variable

A vertex set variable is where a
SELECT statement starts from

A vertex set variable is also the
outcome of a SELECT statement

In this case the vertex set
start_set only contains one
single vertex that is the input
parameter

This is the recommendedway to
start your traversal logic

The Basics

Find all the claims of a

patient

Start = {input_patient};

Claims = SELECT t FROM Start:s-(reverse_Associated:e)-Claim:;

CREATE QUERY GetClaims(vertex<User>input_patient) FOR GRAPH Social {

-/

PRINT Claims;
}
Start reverse_Associated Claims
Y (o))
/'
I
I
Input 1
Patient
\
\
\\‘
N

Start is a vertex set initialized by the input
vertex input_patient

FROM clause finds edges which match the
pattern: source vertex is in Start, edge
type is reverse_Associated, and target
vertex is restricted to User type.

For each edge satisfies the conditions in

the FROM clauses, 5,2 and t are aliases of
source vertex, edge and target vertex.

,©and [are not keywords, you can
rename them.

Claims is anew vertex setequal to 1.

Accumulators

Accumulators are special type of variables that accumulate information about the graph during the traversal

Accumulating phase 1: receiving messages, the messages received will be temporarily put to a bucket that
belongs to the accumulator

Accumulating phase 2: The accumulator will aggregate the messages it received based on its accumulator
type - the aggregated value will become the accumulator’s value, and its value can be accessed

Value: &

Accumulators

Forexample:

B A c K T : The teachercollects test papers from all
S c H 0 0 students and calculates anaverage score.
Teacher: accumulator
-

£

Student: vertex/edge
Test paper: message sent to accumulator

Average Score: final value of accumulator

Phase 1: teacher collects all the test paper

Phase 2: teacher grades it and calculate
the average score.

Accumulators

Local Accumulators:

« Each selected vertex has its own accumulator

* Local meanspervertex - eachvertex doesits
own processing and considerswhat it can
see/read/write

ex.SumAccum @A;

Global Accumulators:

- Stored in stored globally, visible
toall

« Allverticesand edges have
access

ex.SumAccum @ @ B;

Accumulators

The GSQL language provides many different accumulators, which follow the same rules for receiving
and accessingdata - eachof them, however, has its unique way of aggregating values

Old Value:
2

New Value:
11

Old Value:
2

New Value: 5

Old Value:
2

New Value: 1

Old Value:
2

New Value:
2.75

SumAccum<int>
Computes and stores the
cumulative sum of numeric
values or the cumulative
concatenation oftext values.

MaxAccum<int>
The MaxAccum types
calculate and store the
cumulative maximumofa
series of values.

MinAccum<int>

The MinAccum types
calculate and store the
cumulative minimum ofa
series of values.

AvgAccum
Calculates and stores the

cumulative mean ofa
series ofnumeric values.

Accumulators

The GSQL language provides many different accumulators, which follow the same rules for receiving
and accessingdata - eachof them, however, has its unique way of aggregating values.

(‘{JserA”, 100) '
\ I
\ (“userC’, 300
\ /
\ /
%
Oid Value: Old Value: e el
2 [userD,150]
[2] 2] New Value:
New Value: New Value: New Value: [userC,300,
[2,1,3,5] [2,1,5,3,3] 1->6 UserD, 150,
userA,100
SetAccumc<int> ListAccum<int> MapAccum<int,SumAccum<int>> HeapAccum<Tuple>
Maintains a collection of Maintains a sequential Maintains a collection of Maintains a sorted collection of

tuples and enforces a maximum

unique elements. collection of elements. key -> value) pairs. ; !
q (key)P number of tuples in the collection

MPP mechanism of TigerGraph

Processing Vertex-Induced ACCUM/WHERE clause
or POST-ACCUM/HAVING clause

L6l 7Jl8 g Jl10]

Server

@8 DS

() VERTEX

() EDGE

user_set={User.*};

user_set= SELECT sFROM user_set:s
POST-ACCUM
.... Il some logic;

e Athread will be assigned to each vertex
segment to performthe logic definedin the
POST-ACCUM clause in parallel.

e Once the task of one segmentis done, the
thread move to next unprocessed segment.

e By default, the maximum # of CPU cores of
a thread will be assigned.

MPP mechanism of TigerGraph @ DS

() VERTEX
Processing Edge-Induced WHERE/ACCUM clause () EDGE
user_set= {User.*},
(1) (2)=3) J(s) user_set= SELECT s FROM user_set:s-(:e)->t
ACCUM
.... Il some logic;

e A thread will be assigned to each edge
segment to perform the logic defined in
ACCUM clause in parallel.

e Once the task of a segment is done, the
thread move to next unprocessed segment.

Server e By default, the maximum # of CPU cores of

a thread will be assigned

@ DS

MPP mechanism of TigerGraph () VERTEX
Processing Edge-Induced WHERE/ACCUM clause distributedly () EDGE
\ //
(11)(12) (131 (14 (15)
LD

Serverl Server 2

Algorithm Types

L dJ oJ o o oo o o

Centrality

Assign numbers or rankings to each vertex corresponding to their network position

Classification
Classifythe vertices into sets according to some external rule

Community
Groupthe vertices sothateach group is densely connected

GraphML/Embeddings

Convertthe neighborhood topology of each vertex into a fixed size vector of decimal values

Path

Find the best paths from one vertexto another (shortest, lowest weight, or other criteria)
Similarity
Compute similarity between pairs ofitems

Topological Link Prediction

Predictthe existence of a link between two entities in a network

Frequent Pattern Mining
Find subgraph patterns that occur the most frequently

Algorithms

Centrality

PageRank
Artide Rank

Betweenness

Closeness

Degree

Eigenvector

Harmonic

Influence M aximization

Community

Connected Components
K Core

K M eans

Label Propagation

Local Cluster Coefficient
Louvain
Speaker-Listener Label

Propagation
Triangle Counting

GraphML/Embeddings Similarity .
Cosine
FastRP Jaccard
Path NodezVec K Nearest Neighbors
Approximate Nearest
Astar_shortest path -
BES Neighbors
Fcle detection Topological Link Prediction
Estimated diameter Adamic Adar
Maxflow Common Neighbors

Minimum_spanning_forest Preferential A ttachment

Minimum_spanning_tree Resource Allocation

Shortest Path Same Community
Classification Total Neighbors

Greedy Graph Coloring

Maximal independent_set

ZttEE Y HO|X| =t Z2 L SE2 o2 7HX| HAFYO|
0195 25 4% 7r507H7r & LI Ct.

https: //github.com/tigergraph/gsql-graph-algorithms

AA

https://github.com/tigergraph/graph-ml-notebooks

https://github.com/tigergraph/gsql-graph-algorithms
https://github.com/tigergraph/graph-ml-notebooks

	Slide 1: TIGERGRAPH와 NEO4J를 바라보는 Architect 관점 그리고 산업계 동향
	Slide 2: Who am I
	Slide 3: 산업계 동향
	Slide 4: Graph DB Ranking
	Slide 5: Graph Database Infograph
	Slide 6: RDBMS + GRAPH
	Slide 7: ORACLE GRAPH
	Slide 8: SQL Server GRAPH
	Slide 9: SQL Server GRAPH
	Slide 10: PostgreSQL + Apache AGE(BITNINE)
	Slide 11: NOSQL + GRAPH
	Slide 12: Apache TinkerPop GRAPH
	Slide 13: Amazon Neptune
	Slide 14: Neo4J Deep Dive
	Slide 15: Who is Neo4J?
	Slide 16: Query Performance
	Slide 17: Query Performance
	Slide 18: IFA(Index-Free-Adjacency
	Slide 19: Architect
	Slide 20: H/A Architect
	Slide 21: H/A Architect
	Slide 22: Sharding
	Slide 23: TIGERGRAPH Deep Dive
	Slide 24: Who is TigerGraph?
	Slide 25: Data Loading Time and Speed, Size
	Slide 26: K-Neighborhood Query Time
	Slide 27: Weakly Connected Component and PageRank Queries Time
	Slide 28: The TigerGraph Difference
	Slide 29: Property Graphs – Types and Properties
	Slide 30: TigerGraph Architecture
	Slide 31: TigerGraph Architecture
	Slide 32: Query Processing workflow
	Slide 33: Data Ingestion
	Slide 34: TigerGraph Native Graph Storage
	Slide 35: Distributed Native Graph Storage
	Slide 36: Data Ingestion in Distributed Cluster in Distributed
	Slide 37: Data Ingestion in Distributed Cluster in Single Server Mode
	Slide 38: MPP - Distributed Cluster in Single Server mode
	Slide 39: MPP - Distributed Cluster in Distributed mode
	Slide 40: MPP mechanism
	Slide 41: TigerGraph Memory Usage Overview TigerGraph Memory
	Slide 42: Data Encryption & Data Compress
	Slide 43: NON-FUNCTIONAL FEATURES
	Slide 44: TigerGraph Distributed Database Architecture
	Slide 45: High Availability
	Slide 46: HA and Concurrency
	Slide 47: HA and Concurrency
	Slide 48
	Slide 49: HA and Distributed Storage
	Slide 50: HA Read and Write Behavior
	Slide 51: HA Continuous Operation
	Slide 52: Distributed Data for Massive Datasets
	Slide 53: HA, without External Load Balancing
	Slide 54: HA and Distributed Hybrid Storage
	Slide 55: HA, with External Load Balancing
	Slide 56: NON-FUNCTIONAL FEATURES
	Slide 57: Role-Based Access Control
	Slide 58: Admin Portal UI for Managing User Privileges
	Slide 59: MultiGraph for RBAC and Data Sharing
	Slide 60: Roles and Privileges
	Slide 61
	Slide 62: Transactional Model
	Slide 63: ACID Compliance
	Slide 64: GSQL Queries
	Slide 65: Query Running Modes
	Slide 66: The Basics
	Slide 67: The Basics
	Slide 68: The Basics
	Slide 69: The Basics
	Slide 70: The Basics
	Slide 71: Accumulators
	Slide 72: Accumulators
	Slide 73: Accumulators
	Slide 74: Accumulators
	Slide 75: Accumulators
	Slide 76: MPP mechanism of TigerGraph
	Slide 77: MPP mechanism of TigerGraph
	Slide 78: MPP mechanism of TigerGraph Processing Edge-Induced WHERE/ACCUM clause distributedly
	Slide 79: Algorithm Types
	Slide 80: Algorithms

