
TIGERGRAPH와 NEO4J를바라보는
Architect 관점그리고산업계동향

윤명식 메가존클라우드

Who am I

윤명식 매니저

• MegazoneCloud OCTO

• Graph Database Architect

• TigerGraph DB Specialist

• 01089489592

• myoungsig.youn@mz.co.kr

• jazzlian@gmail.com

mailto:Myoungsig.youn@mz.co.kr

산업계 동향

Graph DB Ranking

출처: https://db-engines.com/en/ranking/graph+dbms

Graph Database

Infograph

RDBMS + GRAPH

CREATE PROPERTY GRAPH BANK_GRAPH

VERTEX TABLES (

BANK_ACCOUNTS

KEY (ID)

PROPERTIES (ID, Name, Balance)

)

EDGE TABLES (

BANK_TRANSFERS

KEY (TXN_ID)

SOURCE KEY (src_acct_id) REFERENCES BANK_ACCOUNTS(ID)

DESTINATION KEY (dst_acct_id) REFERENCES BANK_ACCOUNTS(ID)

PROPERTIES (src_acct_id, dst_acct_id, amount)

);

REM Check if there are any 3-hop (triangles) transfers that

start and end at the same account

SELECT acct_id, COUNT(1) AS Num_Triangles

FROM graph_table (BANK_GRAPH

MATCH (src) - []->{3} (src)

COLUMNS (src.id AS acct_id)

) GROUP BY acct_id ORDER BY Num_Triangles DESC;

ACCT_ID NUM_TRIANGLES

__________ ________________

918 3

751 3

534 3

359 3

119 2

677 2

218 2

…

118 rows selected.

ORACLE GRAPH

Get started with property graphs in Oracle
Database 23c Free – Developer Release

Oracle spatial and Graph

https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://en.wikipedia.org/wiki/Oracle_Spatial_and_Graph

SQL Server GRAPH
-- Create a GraphDemo database

IF NOT EXISTS (SELECT * FROM sys.databases WHERE NAME = 'graphdemo')

CREATE DATABASE GraphDemo;

GO

USE GraphDemo;

GO

-- Create NODE tables

CREATE TABLE Person (

ID INTEGER PRIMARY KEY,

name VARCHAR(100)

) AS NODE;

CREATE TABLE Restaurant (

ID INTEGER NOT NULL,

name VARCHAR(100),

city VARCHAR(100)

) AS NODE;

CREATE TABLE City (

ID INTEGER PRIMARY KEY,

name VARCHAR(100),

stateName VARCHAR(100)

) AS NODE;

-- Create EDGE tables.

CREATE TABLE likes (rating INTEGER) AS EDGE;

CREATE TABLE friendOf AS EDGE;

CREATE TABLE livesIn AS EDGE;

CREATE TABLE locatedIn AS EDGE;

출처: https://learn.microsoft.com/ko-kr/sql/relational-databases/graphs/sql-graph-architecture?view=sql-server-ver16

https://learn.microsoft.com/ko-kr/sql/relational-databases/graphs/sql-graph-sample?view=sql-server-ver16

SQL Server GRAPH
-- Find Restaurants that John likes

SELECT Restaurant.name

FROM Person, likes, Restaurant

WHERE MATCH (Person-(likes)->Restaurant)

AND Person.name = 'John';

-- Find Restaurants that John's friends like

SELECT Restaurant.name

FROM Person person1, Person person2, likes, friendOf, Restaurant

WHERE MATCH(person1-(friendOf)->person2-(likes)->Restaurant)

AND person1.name='John';

-- Find people who like a restaurant in the same city they live in

SELECT Person.name

FROM Person, likes, Restaurant, livesIn, City, locatedIn

WHERE MATCH (Person-(likes)->Restaurant-(locatedIn)->City AND Person-(livesIn)->City);

-- Find friends-of-friends-of-friends, excluding those cases where the relationship "loops back".

-- For example, Alice is a friend of John; John is a friend of Mary; and Mary in turn is a friend of Alice.

-- This causes a "loop" back to Alice. In many cases, it is necessary to explicitly check for such loops and exclude the results .

SELECT CONCAT(Person.name, '->', Person2.name, '->', Person3.name, '->', Person4.name)

FROM Person, friendOf, Person as Person2, friendOf as friendOffriend, Person as Person3, friendOf as friendOffriendOfFriend, Person as

Person4

WHERE MATCH (Person-(friendOf)->Person2-(friendOffriend)->Person3-(friendOffriendOfFriend)->Person4)

AND Person2.name != Person.name

AND Person3.name != Person2.name

AND Person4.name != Person3.name

AND Person.name != Person4.name;

PostgreSQL + Apache AGE(BITNINE)

• Graph Database Plugin for PostgreSQL
• Hybrid Queries (OpenCypher And SQL)
• Fast Graph Query Processing
• Graph Visualization and Analytics
• Current PG13 support

CREATE EXTENSION age;

LOAD 'age’;

SET search_path = ag_catalog, "$user", public;

SELECT create_graph('graph_name’);

SELECT *

FROM cypher('graph_name', $$

CREATE (:label {property:value})

$$) as (v agtype);

SELECT *

FROM cypher('graph_name', $$

MATCH (v)

RETURN v

$$) as (v agtype);

SELECT *

FROM cypher('graph_name', $$

MATCH (a:Person), (b:Person)

WHERE a.name = 'Node A' AND b.name = 'Node B'

CREATE (a)-[e:RELTYPE {name:a.name + '<->' + b.name}]->(b)

RETURN e

$$) as (e agtype);

https://age.apache.org/

https://github.com/apache/age
https://age.apache.org/

NOSQL + GRAPH

Apache TinkerPop GRAPH

DES GRAPH

실무자를위한그래프데이터활용법

AEROSPIKE GRAPH

PayPal: Graph on Areospike

https://docs.datastax.com/eol/en/dse/6.0/dse-arch/datastax_enterprise/dbArch/archGraphTOC.html
https://product.kyobobook.co.kr/detail/S000061352345
https://aerospike.com/products/graph-database/
https://docs.datastax.com/eol/en/dse/6.0/dse-arch/datastax_enterprise/dbArch/archGraphTOC.html
https://aerospike.com/resources/videos/summit19/ty-paypal/

Amazon Neptune

출처: https://aws.amazon.com/ko/blogs/industries/graphing-the-grid-on-aws/

https://aws.amazon.com/ko/neptune/?nc2=h_ql_prod_db_nep

Neo4J Deep Dive

Who is Neo4J?

https://www.crunchbase.com/organization/neo-technology

Building Knowledge Graphs: A Practitioner’s Guide

https://www.crunchbase.com/organization/neo-technology
https://neo4j.com/knowledge-graphs-practitioners-guide/

Query Performance

• Cost-Base Optimizer

• Statistics

• Explain, Profile

• Vector Search

• Second Index

• Full Text Index

출처: https://en-core.com/kor/board/notice?viewMode=view&ca=+tech&sel_search=&txt_search=&page=1&idx=101

Query Performance

출처: https://en-core.com/kor/board/notice?viewMode=view&ca=+tech&sel_search=&txt_search=&page=1&idx=101

IFA(Index-Free-Adjacency

출처: https://en-core.com/kor/board/notice?viewMode=view&ca=+tech&sel_search=&txt_search=&page=1&idx=97

Architect

H/A Architect

H/A Architect
• Client가Master에게쓰기요청을보냅니다 • Client가 Slave에게쓰기요청을보냅니다

Sharding

TIGERGRAPH Deep Dive

Who is TigerGraph?

We provide advanced analytics on connected data

○ The hyper-scalable graph database for the enterprise

○ Foundational for AI and ML solutions

○ Des igned for efficient concurrent OLTP and OLAP workloads (HTAP)

○ SQL-like query language (GSQL) accelerates time to solution

○ Cloud Neutral: Google GCP. M icrosoft Azure , Amazon

Our customers include:

○ The largest companies in financial, healthcare, telecoms, media, utilities

and innovative startups in cybersecurity, and ecommerce.

https://www.crunchbase.com/organization/tigergraph

Graph-Powered Analytics and Machine Learning with TigerGraph

https://www.crunchbase.com/organization/tigergraph
https://info.tigergraph.com/oreilly-book-4

Data Loading Time and Speed, Size

K-Neighborhood Query Time

Weakly Connected Component and PageRank Queries Time

The TigerGraph Difference
Feature Design Difference Benefit

Real-Time Deep-Link Querying

5 to 10+ hops deep

● Native Graph design

● C++ engine, for high performance

● Storage Architecture

● Uncovers hard-to-find patterns

● Operational, real-time

● HTAP: Transactions+Analytics

Handling Massive Scale ● Distributed DB architecture

● Massively parallel processing

● Compressed storage reduces

footprint and messaging

● Integrates all your data

● Automatic partitioning

● Elastic scaling of resource usage

In-Database Analytics ● GSQL: High-level yet Turing-

complete language
● User-extensible graph algorithm

library, runs in-DB

● ACID (OLTP) and Accumulators

(OLAP)

● Avoids transferring data

● Richer graph context

● In-DB machine learning

Property Graphs – Types and Properties

PostPerson
Liked (Undirect Edge)

id: 1025

by_user: 19
liked_post: 12 liked_date:
2021/07/11id: 7

email: vbarracks6@utexas.edu

username: vbarracks6
name: Virgie Barracks
join_date: 2021/09/02

id: 12
content: Suspendisse ornare ….

posted_date: 2020/07/31
posted_by: 7

deleted: False

Post

Person

Hashtag

Message

mailto:vbarracks6@utexas.edu

TigerGraph Architecture

TigerGraph Architecture

Query Processing workflow

Nginx Restpp

GSE(IDS)

GPE

Incoming

Outgoing

Request

Query Name,
parameters,

vertexes

External

Vertex ID

Translated
Internal

Vertex ID

Query Name,
Parameters

Process Query Logic….

Internal
Vertex ID

In Response

Nginx Restpp

GSE(IDS)

GPE

Request

JSON
Response

Translated
External

VertexIDCombined
Response

Query Result

Data Ingestion

Step 3

Each GPE consumes the

partial data updates,

processes it and puts it on

disk.

Loading Jobs and POST use

UPSERT semantics:

● If vertex/edge doesn't

yet exist, create it.

● If vertex/edge already

exists, update it.

● No Duplicates

Step 1

Loaders take in user source

data.

● Bulk load of data files or

a Kafka stream in CSV or

JSON format

● HTTP POSTs via REST

services (JSON)

● GSQL Insert commands

Step 2

Dispatcher takes in the data

ingestion requests in the form of

updates to the database.

1. Query IDS to get internal

IDs

2. Convert data to internal

format

3. Send data to one or more

corresponding GPEs

TigerGraph Native Graph Storage

“USER123” <---> 1234321 IDS: B idirectional external ID to Internal ID

mapping

1234321, John, 33, john@abc.com

1234322, Tom, 27, tom@abc.com

...

Vertex Partitions: Vertex internal ID and attributes

Edge Partitions: Source vertex internal ID,

target vertex internal ID, edge attributes

1234321, 1234322, 2020-04-23, 3.3

1234321, 1234324, 2020-02-13, 2.3

...

mailto:john@abc.com
mailto:tom@abc.com

Distributed Native Graph Storage

1 2 3 7 8 9 13 14 15

4 5 6 10 11 12 16 17 18

1 2 3 7 8 9 13 14 15

4 5 6 10 11 12 16 17 18

1 2 3 7 8 9 13 14 15

4 5 6 10 11 12 16 17 18

Data of different

components are split

into segments.

The segments are stored

distributedly across the cluster.

The segments of different components with

same ID stores data for the same set of

vertices under the same vertex type.

The location of a vertex can be

calculated based on its internal ID

IDS

VERTEX

EDGE

1392273

Server 1 Server 2 Server 3

Data Ingestion in Distributed Cluster in Distributed

Server Mode

Incremental
Data

Nginx Restpp

GPE GPE GPE

CSV/JS ON Insert/Update/Delete
Vertices and Edges

Listen to
corresponding

topic for new
messages

Acknowledge

Response

Incoming

Outgoing

Synchronize
data to disk

GSE(IDS)

ID Translation

Kafka Kafka Kafka

Disk

Server 1

Disk

Server 2

Disk

Server 3

Kafka Cluster

In-memory
copy of data

Incremental
Data

Nginx Restpp

GPE GPE GPE

Disk Disk Disk

CSV/JS ON Insert/Update/Delete
Vertices and Edges

Listen to
corresponding

topic for new
messages

Acknowledge

Response

Incoming

Outgoing

Synchronize
data to disk

GSE(IDS)

ID Translation

Kafka Kafka Kafka

Server 1 Server 2 Server 3

Kafka Cluster

In-memory
copy of data

Data Ingestion in Distributed Cluster in Single Server Mode

Server 3Server 2Server 1

Single Server Mode
Query

Single Server Mode

● The cluster elects one

server to be the master for

that query.

● All query computations

take place on query master.

● Vertex and edge data are

copied to the query master

as needed.

● Best for queries with one or

a few starting vertices.

MPP - Distributed Cluster in Single Server mode

Server 3Server 2Server 1

MPP - Distributed Cluster in Distributed mode

Distributed Query
(Master Node)

Distributed Mode

● The server that receives the

query becomes the master.

● Computations execute on

all servers in parallel.

● Global accumulators are

transferred across the

cluster.

● If your query starts from all

or most vertices, use this

mode.

Distributed Query Distributed Query

@@ communication @@ communication

@@ communication

Server 1 Server 2 Server 3

Single Server Mode
Query

Single Server mode VERSUS Distributed mode

Server 1 Server 2 Server 3

Distributed Query
(Master Node)

Distributed Query Distributed Query

@@
communication

@@
communication

Single Server Mode is better when
1. Starting from a single or small number of vertices.

2. Modest number of vertices/edges are traversed.

3. Heavy usage of global accumulators.

Ex: Point query, single entity-based transaction/update

Distributed Mode is better when

1. Starting from all or a large number of vertices.

2. Very large number vertices/edges are traversed.

Ex: M ost graph algorithms & global analytics

(PageRank, Closeness Centrality, Louvain Community,

etc.)

MPP mechanism

TigerGraph Memory Usage Overview
TigerGraph Memory

Query 1

snapshot

Query 2

snapshot

GSE(IDS)

Bidirectiona
l ID

Mapping

MISC

PROC
Idle

Query 3

snapshot
...

GPE

Graph Partitions

Graph Updates

System Memory

Global Accumulators
(Global Copy/Local Copy)

Local Accumulators

Shuffled

Partitions/Accumulator

s

Current Activated Vertex Set

Upserted Vertices/Edges

Query Memory

● Encrypted D ata at Rest

○ Choice of encryption levels (file, volume, partition, disk)

■ Kernel level: dm-crypt / cryptsetup

■ User level: FUSE (Filesystem in User Space)

○ Automatically encrypted in TigerGraph Cloud

● Encrypted Data in Transit

○ Can set up SSL/TLS for HTTPS protocol

○ Automatically encrypted in TigerGraph Cloud

● Compressed Data

○ Can Compress Data

○ Lz4, Snappy, etc

Data Encryption & Data Compress

NON-FUNCTIONAL

FEATURES

● High Availability

● Access Control & Security

● Transaction Management

TigerGraph Distributed Database Architecture

Advantages:

● Simple to setup and

manage

● Unlimited scale-out;

simple to expand

● Scalable OLAP:

massively parallel
processing

● Scalable OLTP:
concurrent ACID
transactions

● Economical

Simple setup, Performant design

● Setup: Just tell TigerGraph how many servers.

● TigerGraph seamlessly distributes data.

● Users see a single database, not shards.

Real-time active

replication
for High
Availability (HA)

● write to all
● read from any

● strong
consistency

High Availability

● TigerGraph HA Replication provides both Increased Throughput and Continuous

Operation

● Cluster size = P X R (Partitions x Replicas)

● Any cluster size is allowed, except 1x2

P = Partitioning Factor

R =
Replication

Factor

HA and Concurrency

● Each server has T available workers for serving requests (GSQL query, REST POST,

etc.)

T is a system configuration parameter, defaults to 8. Consider number of CPU cores.

● Cluster's total number of workers = TxPxR, e.g. 8x5x2 = 80

○ A point mode query uses 1 worker.

○ A distributed mode query use P workers.

P = Partitioning Factor

R = Replication Factor

1A 2A 3A 4A 5A

1B 2B 3B 4B 5B

P1 P3 P4 P5P2

R1 R3 R4 R5R2

HA and Concurrency

Worker Processors = 8x5x2 = 80

HA and Concurrency

HA and Distributed Storage

HA cluster

An HA cluster needs at least 3

server machines, even i f the

system only has one graph

partition.

Machines can be physical or

virtual.

For a distributed system with

N partitions (where N > 1), the

system must have at least 2N

machines.

Distributed

System

HA Read and Write Behavior

● All Replicas are Read/Write, always in sync with the latest updates

● Writes go to all replicas (e.g. both 1A and 1B).

● Reads can be from any one replica (e.g. either 1A or 1B).

● Distributed queries can mix replicas (e.g. {1A, 2B, 3B, 4A, 5B}

is a valid active set for a request.)

P = Partitioning Factor

R =
Replication

Factor

1A 2A 3A 4A 5A

1B 2B 3B 4B 5B

HA Continuous Operation

● If any s ing le server is unavailable (expected or unexpected):

○ When it fails to respond after a certain number of tries, requests will

automatically divert to another replica (e.g. 3B is unavailable, so use 3A)

○ If it fails in the middle of a transaction, that transaction might be aborted.

● System continues to operation, with reduced throughput, until server is restored.

P = Partitioning Factor

R =
Replication

Factor

1A 2A 3A 4A 5A

1B 2B 3B 4B 5B

X

Partition 1 Partition 2 Partition 3

RESTPP RESTPP RESTPP

Distributed Data for Massive Datasets

● Graph DB is partitioned across multiple server nodes.

○ Default partitioning scheme: uniform hash for load balancing

● RESTPP acts as scheduler and distributor.

● For ACID:
○ Transactions are not commit ted until all partitions are updated → Strong Consistency

RESTPP

Replica 1 Replica 3Replica 2

RESTPP RESTPP

HA, without External Load Balancing

● One RESTPP is chosen as the master, for load balancing decisions.

● Default scheduling scheme is round robin.

HA and Distributed Hybrid Storage

• System has both distributed and HA storage

Partition 1

Replica 1

Partition 2

Replica 1

Partition 3

Replica 1

RESTPP RESTPP RESTPP

Partition 1

Replica 2

Partition 2

Replica 2

Partition 3

Replica 2

RESTPP RESTPP RESTPP

RESTPP

Replica 1 Replica 3Replica 2

RESTPP RESTPPLoad

Balancer

HA, with External Load Balancing

● User selects an external load balancing component/service.

NON-FUNCTIONAL

FEATURES

● High Availability

● Access Control & Security

● Transaction Management

Role-Based Access Control

● Follows SQL approach for roles.

GSQL:

GRANT <role> ON GRAPH <graph> TO <user1, user2, … >

REVOKE <role> ON GRAPH <graph> FROM <user1, user2, … >

● Can map TigerGraph roles to external LDAP roles and groups.

Admin Portal UI for Managing User Privileges

● Share & Collaborate
○ Multiple groups share one master

database
⇒ data integration, insights, productivity

● Real-time, Updatable
○ Shared updates, no copying

⇒ cleaner, faster, cheaper, safer

● Fine-Grained Security
○ Each group is granted its own view
○ Each group has its own admin user,

who manages local users' privileges.

MultiGraph for RBAC and Data Sharing

Roles and Privileges
Built-In Roles:
● Superuser: Admin privileges on all graphs. Create global vertex & edge

types, create multiple graphs, and clear the database.

● Admin: Designer privileges, + create/drop users, grant/revoke roles for

its assigned graph. That is, control existence & privileges of its local
users.

● Globaldesigner: Designer privileges + create global schema, create
objects. Also, delete graphs w hich they created.

● Designer: Query writer privileges + modify the schema, create loading
jobs for its assigned graph.

● Querywriter: Query reader privileges + create queries and run data-

manipulation commands on its assigned graph.

● Queryreader: run existing loading jobs & queries for its assigned graph.

User-Defined Roles in version 3.2 above

N O N -FUN C TIO N A L FEATURES

● High Availability

● Access Control & Security

● Transaction Management

Transactional Model

● The TigerGraph distributed database provides full ACID transactions with

sequential consistency

● Transactions definition:

○ Each GSQL Query procedure is a transaction. Each query may have

multiple SELECT, INSERT, or UPDATE statements.

○ Each REST++ GET, POST, or DELETE operation (which may have

multiple update operations within it) is a transaction.

ACID Compliance

Atomicity

GSQL query w/ or w/o
updates = Transaction

Transactions are “all or

nothing”: either all
changes are successful,
or none is successful.

Consistency Isolation Level Durability

Single-server

Consistency:

A transaction obeys data
validation rules.

Distributed System

Sequential Consistency:

Every replica of the data
performs the same

operations in the same
order.

Repeatable Read:
● Each transaction

sees the same data.

No Dirty/Phantom Read:
● A transaction's

updates are not

visible to other
transactions until the

update is committed.

The TigerGraph platform

implements write-ahead

logging (WAL) to disk to
provide durability.

Logs are consumed

periodically to update
the database on disk.

A transaction with update

operations may

insert/delete multiple

vertices/edges or update

the attribute values of
multiple edges/vertices.

Such update requests are

“all or nothing”: either all

changes are successful, or
none is successful.

• Exploring data using GraphStudio can be interesting, but there are limitations

• GSQL queries however give the most flexibility when interacting with a graph

• A GSQL query is a user defined procedure

○ There can be one or more input parameters

○ It can produce data in two ways, by returning a value or by “printing”

GSQL Queries

Queries can be run in Interpret Mode or as Installed queries

• Interpret mode does not require the query to be compiled or installed, the trade

off is that an interpreted query is not as efficient as an installed query. There

are also some limitations in functionality for queries run in this mode

• Installed queries have no such limitations and become accessible as reachable

endpoints

Query Running Modes

The Basics
resultSet = SELECT vSet

FROM (edgeSet | vertexSet)

[whereClause] [accumClause]

[postAccumClause] [havingClause]

[orderClause] [limitClause] ;

• FROM: select active vertices & edges.

• WHERE: conditionally filter the active sets

• ACCUM: iterate on edge set; compute with accumulators

• POST-ACCUM: iterate on vertex sets; compute with accumulators

• HAVING: conditionally filter the result set

• ORDER BY: sort

• LIMIT: max number of items

• SELECT: result from source or target set

ACCUM

POST-ACCUM

WHERE

FROM

LIMIT

SELECT

ORDER BY

HAVING

The Basics
GSQL traverses the graph from one set of vertices, through selected edges originated from the

starting set, to another set of vertices:

cardiology

cardiac

electrophysiology,

echocardiog

raphy

Cardiology

The Basics

Data Declare Session

Query Logic Session

The Basics

The query always starts with a seed vertex set - that
logic originates from

is where your traversal

Start from a single vertex:

CREATE QUERY example(VERTEX input_ver) FOR GRAPH g {

start_set = {input_ver};

….

}

● Here start_set is the variable

name of vertex set variable

● A vertex set variable is where a

SELECT statement starts from

● A vertex set variable is also the

outcome of a SELECT statement

● In this case the vertex set
start_set only contains one
single vertex that is the input
parameter

● This is the recommended way to
start your traversal logic

The Basics
Find all the claims of a patient

CREATE QUERY GetClaims(vertex<User> input_patient) FOR GRAPH Social {

Start = {input_patient};

Claims = SELECT t FROM Start:s-(reverse_Associated:e)-Claim:t;

PRINT Claims;

}

Input
Patient

Claim

A

ClaimB

ClaiC

Start Claimsreverse_Associated

s

t
e

s e t

s
e

t

● Start is a vertex set initialized by the input
vertex input_patient

● FROM clause finds edges which match the

pattern: source vertex is in Start, edge

type is reverse_Associated, and target
vertex is restricted to User type.

● For each edge satisfies the conditions in

the FROM clauses, s, e and t are aliases of
source vertex, edge and target vertex.

● s, e and t are not keywords, you can
rename them.

● Claims is a new vertex set equal to t.

Accumulators

A

E

B

D

C

2

1

1

Accumulators are special type of variables that accumulate information about the graph during the traversal

Accumulating phase 1: receiving messages, the messages received will be temporarily put to a bucket that
belongs to the accumulator

Accumulating phase 2: The accumulator will aggregate the messages it received based on its accumulator

type - the aggregated value will become the accumulator’s value, and its value can be accessed

Graph

2,1,1

Value: 04

Accumulator

Accumulators
For example:

The teacher collects test papers from all

students and calculates an average score.

Teacher: accumulator

Student: vertex/edge

Test paper: message sent to accumulator

Average Score: final value of accumulator

Phase 1: teacher collects all the test paper

Phase 2: teacher grades it and calculate
the average score.

Global Accumulators:

• Stored in stored globally, visible
to all

• All vertices and edges have
access

4

@@B

2,1,1

1,4,1
0

15
@A10

4

2

1
1

e.x. S umA ccum @ @ B;

@A

Local Accumulators:

• Each selected vertex has its own accumulator

• Local means per vertex - each vertex does its

own processing and considers what it can

see/read/write

e.x. S umA ccum @ A ;

@A

1
@A

@A

Accumulators

Accumulators

The GSQL language provides many different accumulators, which follow the same rules for receiving
and accessing data - each of them, however, has its unique way of aggregating values

Old Value:

2
New Value:

11

1, 3, 5

1
3 5

SumAccum<int>

Computes and stores the
cumulative sum of numeric

values or the cumulative

concatenation of text values.

Old Value:

2

New Value: 5

1, 3, 5

1 3

MaxAccum<int>

The MaxAccum types
calculate and store the

cumulative maximum of a

series of values.

Old Value:

2

New Value: 1

1, 3, 5

1 3

Old Value:

2

New Value:
2.75

1, 3, 5

1 3

AvgAccum

Calculates and stores the

cumulative mean of a
series of numeric values.

5 5

MinAccum<int>

The MinAccum types
calculate and store the

cumulative minimum of a
series of values.

5

The GSQL language provides many different accumulators, which follow the same rules for receiving
and accessing data - each of them, however, has its unique way of aggregating values.

1, 3, 3, 5

Old Value:

[2]

New Value:

[2,1,3,5]

1 5

SetAccum<int>

Maintains a collection of

unique elements.

1, 5, 3, 3

Old Value:

[2]

New Value:

[2,1,5,3,3]

1

ListAccum<int>

Maintains a sequential

collection of elements.

1->2

1->3
5->2

Old Value:

[1->1]

New Value:

1->6
5->2

1->2 1->3 5->2

MapAccum<int,SumAccum<int>>

Maintains a collection of

(key -> value) pairs.

Old Value:

[userD,150]

New Value:
[userC,300,

UserD,150,

userA,100]

userC,300

user A,100

(“userA”, 100)

HeapAccum<Tuple>

Maintains a sorted collection of
tuples and enforces a maximum
number of tuples in the collection

53 3 3 3 (“userC” , 300)

Accumulators

MPP mechanism of TigerGraph

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5

6 7 8 9 10

IDS

VERTEX

EDGE

user_set = {User.*};

user_set = SELECT s FROM user_set:s

POST-ACCUM
…. // some logic;

● A thread will be assigned to each vertex

segment to perform the logic defined in the

POST-ACCUM clause in parallel.

● Once the task of one segment is done, the

thread move to next unprocessed segment.

● By default, the maximum # of CPU cores of

a thread will be assigned.

Server

CPU

Processing Vertex-Induced ACCUM/WHERE clause

or POST-ACCUM/HAVING clause

MPP mechanism of TigerGraph

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5

6 7 8 9 10

IDS

VERTEX

EDGE

user_set = {User.*};

user_set = SELECT s FROM user_set:s-(:e)->:t

ACCUM
…. // some logic;

● A thread will be assigned to each edge

segment to perform the logic defined in

ACCUM clause in parallel.

● Once the task of a segment is done, the

thread move to next unprocessed segment.

● By default, the maximum # of CPU cores of

a thread will be assigned

Server

CPU

Processing Edge-Induced WHERE/ACCUM clause

MPP mechanism of TigerGraph
Processing Edge-Induced WHERE/ACCUM clause distributedly

Server 1

1 2 3 4 5 11 12 13 14 15

6 7 8 9 10 16 17 18 19 20

1 2 3 4 5 11 12 13 14 15

6 7 8 9 10 16 17 18 19 20

1 2 3 4 5 CPU

 11
12 13 14 15

6 7 8 9 10 16 17 18 19 20

Server 2

CPU

IDS

VERTEX

EDGE

❏ Centrality
Assign numbers or rankings to each vertex corresponding to their network position

❏ Classification
Classify the vertices into sets according to some external rule

❏ Community
Group the vertices so that each group is densely connected

❏ GraphML/Embeddings
Convert the neighborhood topology of each vertex into a fixed size vector of decimal values

❏ Path
Find the best paths from one vertex to another (shortest, lowest weight, or other criteria)

❏ Similarity
Compute similarity between pairs of items

❏ Topological Link Prediction
Predict the existence of a link between two entities in a network

❏ Frequent Pattern Mining
Find subgraph patterns that occur the most frequently

Algorithm Types

Algorithms

❏ Centrality

■ PageRank

■ Article Rank

■ Betweenness

■ Closeness

■ Degree

■ Eigenvector

■ Harmonic

■ Influence M aximization

❏ Community

■ Connected Components

■ K Core

■ K M eans

■ Label Propagation

■ Local Cluster Coefficient

■ Louvain

■ Speaker-Listener Label

Propagation

■ Triangle Counting

❏ GraphML/Embeddings

■ FastRP

■ Node2Vec

❏ Path

■ Astar_shortest_path

■ BFS

■ Cycle_detection

■ Estimated_diameter

■ Maxflow

■ Minimum_spanning_forest

■ Minimum_spanning_tree

■ Shortest Path

❏ Classification

■ Greedy Graph Coloring

■ Maximal_independent_set

❏ Similarity

■ Cosine

■ Jaccard

■ K Nearest Neighbors

■ Approximate Nearest

Neighbors

❏ Topological Link Prediction

■ Adamic Adar

■ Common Neighbors

■ Preferential A ttachment

■ Resource Allocation

■ Same Community

■ Total Neighbors

최단 경로 및 페이지 순위와 같은 일부 항목은 여러 가지 변형이
있으므로 총 개수가 50개가 넘습니다.

https://github.com/tigergraph/gsql-graph-algorithms

https://github.com/tigergraph/graph-ml-notebooks

https://github.com/tigergraph/gsql-graph-algorithms
https://github.com/tigergraph/graph-ml-notebooks

	Slide 1: TIGERGRAPH와 NEO4J를 바라보는 Architect 관점 그리고 산업계 동향
	Slide 2: Who am I
	Slide 3: 산업계 동향
	Slide 4: Graph DB Ranking
	Slide 5: Graph Database Infograph
	Slide 6: RDBMS + GRAPH
	Slide 7: ORACLE GRAPH
	Slide 8: SQL Server GRAPH
	Slide 9: SQL Server GRAPH
	Slide 10: PostgreSQL + Apache AGE(BITNINE)
	Slide 11: NOSQL + GRAPH
	Slide 12: Apache TinkerPop GRAPH
	Slide 13: Amazon Neptune
	Slide 14: Neo4J Deep Dive
	Slide 15: Who is Neo4J?
	Slide 16: Query Performance
	Slide 17: Query Performance
	Slide 18: IFA(Index-Free-Adjacency
	Slide 19: Architect
	Slide 20: H/A Architect
	Slide 21: H/A Architect
	Slide 22: Sharding
	Slide 23: TIGERGRAPH Deep Dive
	Slide 24: Who is TigerGraph?
	Slide 25: Data Loading Time and Speed, Size
	Slide 26: K-Neighborhood Query Time
	Slide 27: Weakly Connected Component and PageRank Queries Time
	Slide 28: The TigerGraph Difference
	Slide 29: Property Graphs – Types and Properties
	Slide 30: TigerGraph Architecture
	Slide 31: TigerGraph Architecture
	Slide 32: Query Processing workflow
	Slide 33: Data Ingestion
	Slide 34: TigerGraph Native Graph Storage
	Slide 35: Distributed Native Graph Storage
	Slide 36: Data Ingestion in Distributed Cluster in Distributed
	Slide 37: Data Ingestion in Distributed Cluster in Single Server Mode
	Slide 38: MPP - Distributed Cluster in Single Server mode
	Slide 39: MPP - Distributed Cluster in Distributed mode
	Slide 40: MPP mechanism
	Slide 41: TigerGraph Memory Usage Overview TigerGraph Memory
	Slide 42: Data Encryption & Data Compress
	Slide 43: NON-FUNCTIONAL FEATURES
	Slide 44: TigerGraph Distributed Database Architecture
	Slide 45: High Availability
	Slide 46: HA and Concurrency
	Slide 47: HA and Concurrency
	Slide 48
	Slide 49: HA and Distributed Storage
	Slide 50: HA Read and Write Behavior
	Slide 51: HA Continuous Operation
	Slide 52: Distributed Data for Massive Datasets
	Slide 53: HA, without External Load Balancing
	Slide 54: HA and Distributed Hybrid Storage
	Slide 55: HA, with External Load Balancing
	Slide 56: NON-FUNCTIONAL FEATURES
	Slide 57: Role-Based Access Control
	Slide 58: Admin Portal UI for Managing User Privileges
	Slide 59: MultiGraph for RBAC and Data Sharing
	Slide 60: Roles and Privileges
	Slide 61
	Slide 62: Transactional Model
	Slide 63: ACID Compliance
	Slide 64: GSQL Queries
	Slide 65: Query Running Modes
	Slide 66: The Basics
	Slide 67: The Basics
	Slide 68: The Basics
	Slide 69: The Basics
	Slide 70: The Basics
	Slide 71: Accumulators
	Slide 72: Accumulators
	Slide 73: Accumulators
	Slide 74: Accumulators
	Slide 75: Accumulators
	Slide 76: MPP mechanism of TigerGraph
	Slide 77: MPP mechanism of TigerGraph
	Slide 78: MPP mechanism of TigerGraph Processing Edge-Induced WHERE/ACCUM clause distributedly
	Slide 79: Algorithm Types
	Slide 80: Algorithms

