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History of (Large) Language Models

Dcistn HAZBIEE DSBA ATH
EHO|X|: http://dsbakorea.acks
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Transformers are a special case of Graph Neural Networks
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Sentiment?
Next word?

Part-of-speech tags?
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Transformers are a special case of Graph Neural Networks
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Translation?
Sentiment?
Next word?

Part-of-speech tags?
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Software 2.0

I sometimes see people refer to neural networks as just “another tool in your
machine learning toolbox”. They have some pros and cons, they work here
or there, and sometimes you can use them to win Kaggle competitions.
Unfortunately, this interpretation completely misses the forest for the trees.
Neural networks are not just another classifier, they represent the beginning
of a fundamental shift in how we develop software. They are Software 2.0.
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Please join us for the #WikiForHumanRights writing challenge on “Right to a healthy environment”,
or join related events hosted by the international Wikimedia community
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Universal approximation theorem

Article  Talk Read

Edit source  View history Y

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, universal approximation theorems are results!'1(2] that establish the density of an algorithmically
generated class of functions within a given function space of interest. Typically, these results concern the approximation capabilities of the feedforward
architecture on the space of continuous functions between two Euclidean spaces, and the approximation is with respect to the compact convergence topology.

However, there are also a variety of results between non-Euclidean spaces'®! and other commonly used architectures and, more generally, algorithmically
generated sets of functions, such as the convolutional neural network (CNN) architecture, (45! radial basis-functions,'®! or neural networks with specific
properties./”)(8] Most universal approximation theorems can be parsed into two classes. The first quantifies the approximation capabilities of neural networks with
an arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each containing a
limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation theorems for neural networks
with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded width" case).

Universal approximation theorems imply that neural networks can represent a wide variety of interesting functions when given appropriate weights. On the other
hand, they typically do not provide a construction for the weights, but merely state that such a construction is possible.
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Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
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Regular In-Context Learning

Contains no wit [...] \n  Negative Lanauane
Very good viewing [...] \n  Positive Mg delg

A smile on your face \n

Natural language targets: {Positive/Negative} sentiment

Flipped-Label In-Context Learning

Contains no wit [...] \n  Positive o
Very good viewing [...] \n  Negative Mg de?

A smile on your face \n

Flipped natural language targets: {Negative/Positive} sentiment

Semantically-Unrelated Label In-Context Learning

Contains no wit [...] \n Foo Larcioes
Very good viewing [...] \n Bar guag Bar
: Model
A smile on your face \n
Semantically-unrelated targets: {Foo/Bar}, {Apple/Orange}, {A/B}
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Larger language models do in-context learning differently - https://arxiv.org/abs/2303.03846
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Chain of Thought

GPT-4 Is a Heasoning Engine

Reason is only as good as the information we give it

BY DAN SHIPPER
MARCH 31, 2023
¥ 291

Drawings of canals on Mars by Percivel Lowell




GPT-4= %2 dIZI(Reasoning Engine) 2IL|LC}. Ehare

w\ =2 m 5 days ago

GPT-4 Is a Reasoning Engine

Reason is only as good as the information we give it

https://every.to/chain-of-thought/gpt-4-is-a-reasoning-engine
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@ OpenAl

ChatGPT plugins

We've implemented initial support for plugins in ChatGPT.
Plugins are tools designed specifically for language models
with safety as a core principle, and help ChatGPT access up-
to-date information, run computations, or use third-party
services.

Join plugins waitlist | Read documentation
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Home  Datasets  Algorithms  Contact

Info

ANN-Benchmarks is a benchmarking environment for approximate nearest neighbor algorithms search. This website contains the current benchmarking results. Please visit
http://github.com/erikbern/ann-benchmarks/ to get an overview over evaluated data sets and algorithms. Make a pull request on Github to add your own code or improvements to the
benchmarking system.

Benchmarking Results

Results are split by distance measure and dataset. In the bottom, you can find an overview of an algorithm's performance on all datasets. Each dataset is annoted by (k = ...), the
number of nearest neighbors an algorithm was supposed to return. The plot shown depicts Recall (the fraction of true nearest neighbors found, on average over all queries) against
Queries per second. Clicking on a plot reveils detailled interactive plots, including approximate recall, index size, and build time.

Benchmarks for Single Queries

Results by Dataset

Distance: Angular

Recall-Queries per second (1/s) tradeoff - up and to the right is better

nytimes-256-angular (k = 10) 10°
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You know the movie named A?

I'm sorry, but | would need more information to provide an accurate answer. There are ]
many movies with titles that start with the letter A, and without additional context or
details, I'm not sure which movie you are referring to. Could you please provide more

information or clarify your question?

movie name is "A"

I'm still unsure which movie you are referring to, as there are many movies with a one-
word title "A." Could you provide any additional information about the movie such as the
director, main actors, or a brief plot summary? This would help me to better understand

which movie you are asking about.
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Architecture
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- Espresso? But | ordered a cappuccino!
- Don't worry, the cosine distance between them is so small

that they are almost the same thing.
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metric learning O] & &= manifold
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Architecture - Model
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Architecture - Encoding

“‘query: how much protein should a female eat”

->

"passage: As a general guideline, the CDC's average requirement of protein for
women ages 19 to 70 is 46 grams per day. But, as you can see from this chart,
you'll need to increase that if you're expecting or training for a marathon. Check
out the chart below to see how much protein you should be eating each day.



Architecture - Model

LM= MultipleNegativesRankingLoss £ Soll bm25 2 12 x|

ML HIAE2LAB HAE 2 AI=82 = implicit feedback & =&
b=

Efficient Natural Language Response Suggestion for Smart Renlv httns*//arxiv ora/ndf/1705 00652 pdf
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Architecture - Model
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Architecture - Model

a I'//\lV > ¢s > arXiv:2308.14963

Computer Science > Information Retrieval

[Submitted on 29 Aug 2023]

Vector Search with OpenAl Embeddings: Lucene Is All You Need
Jimmy Lin, Ronak Pradeep, Tommaso Teofili, Jasper Xian

We provide a reproducible, end-to-end demonstration of vector search with OpenAl embeddings using Lucene on
the popular MS MARCO passage ranking test collection. The main goal of our work is to challenge the prevailing
narrative that a dedicated vector store is necessary to take advantage of recent advances in deep neural networks as
applied to search. Quite the contrary, we show that hierarchical navigable small-world network (HNSW) indexes in
Lucene are adequate to provide vector search capabilities in a standard bi-encoder architecture. This suggests that,
from a simple cost-benefit analysis, there does not appear to be a compelling reason to introduce a dedicated
vector store into a modern "Al stack" for search, since such applications have already received substantial
investments in existing, widely deployed infrastructure.

Subjects: Information Retrieval (cs.IR)

Cite as:  arXiv:2308.14963 [cs.IR]
(or arXiv:2308.14963v1 [cs.IR] for this version)
https://doi.org/10.48550/arXiv.2308.14963 @

Submission history

From: Jimmy Lin [view email]
[vl] Tue, 29 Aug 2023 01:30:23 UTC (123 KB)
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Device 1 AR
Device 2 12345678
Device 3 12345678
Device 4 12345678

Time ———

Pipeline flush
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Pipeline flush

Device 1 3 9 101112
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Time — Devices idle

Forward Pass Backward Pass
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Device 1
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Speculative Inference

228 Learning-based Speculator
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f attention(q, k, v, mask): # [n_ g, d k], [n k, d k], [n k, d v], [ng, n k] -> [n g, d V]
n softmax(g kom np.sqgrt(q.shape[-1]) mask) v




How many tflops is the M2 Ultra GPU? NVIDIA A100 for NVIDIA A100 for

A I NVIDIA HGX™ PCle
e NVIDIA Ampere
PP 27.2 TFLOPS B
FP64: 9.7 TFLOPS
FPé64 Tensor Core: 19.5 TFLOPS
In total, the M2 Max GPU contains up to 608 execution units

maximum floating point (FP32) performance of 13.6 TFLOPS. _ FP32:19.5TFLOPS |
core GPU with up to 9728 ALUs and 27.2 TFLOPS of FP32 performance.
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Nvidia

NVIDIA A100 for NVIDIA A100 for
NVIDIA HGX™ PCle

GPU Architecture

NVIDIA Ampere

Double-Precision
Performance

FP64: 9.7 TFLOPS
FPé4 Tensor Core: 19.5 TFLOPS

Single-Precision
Performance

FP32:19.5 TFLOPS
Tensor Float 32 (TF32): 156 TFLOPS |
312 TFLOPS*

Half-Precision
Performance

312 TFLOPS | 624 TFLOPS*

Bfloat16

312 TFLOPS | 624 TFLOPS*

Integer Performance

INT8: 624 TOPS | 1,248 TOPS*
INT4: 1,248 TOPS | 2,496 TOPS*

GPU Memory

40 GB HBM2

Memory Bandwidth

1.6 TB/sec

Sign Range Precision
N\ N\
FP32
|I J
' |
TF32 Range

TF32 Precision

FP16

BFLOAT16

A
. \
[ |




