Introduction to Ultipa Graph
GUG 2nd Seminar, 22023.09.23

@ uLtira

Intro
Ultipa Graph

Drivers, UQL and algorithms

Agenda

Ultipa & South Korea GUG

Intro, Yun Smione

Yuri Simione [¥

Sales Director
Ultipa, Inc.

Master of Science (MSc), Computer Science, University of Pisa. Yuri has devoted a significant
portion of his career to unstructured information management. He worked as a consultant for
companies like Xerox and EMC (now Dell EMC), specializing in products such as Opentext
Documentum and Adobe AEM. Since 2014, he has shifted his focus to the world of graph
databases and graph analytics. As of 2022, he serves as the Sales Manager for Ultipa, the
California-based startup behind the eponymous graph database, which is the most performant
and innovative in the market.

LinkedIn: https://www.linkedin.com/in/yurisimione/
Twitter: https://twitter.com/artika4biz

Email yuri.simione@ultipa.com

Mob: +39 333 4156248

https://www.linkedin.com/in/yurisimione/
https://twitter.com/artika4biz
mailto:Yuri.simione@ultipa.com

Intro, Ultipg, Inc

ULEIPY / 'altipa: /

ULTImate

Processing Acceleration

LinkedIn: https://www.linkedin.com/company/ultipa/
Twitter: @Ultipa_Graph
Web: https://www.ultipa.com/

https://www.linkedin.com/company/ultipa/
https://twitter.com/Ultipa_Graph
https://www.ultipa.com/

@ Intro, Ultipa, Inc

Few years ago, the current founders of Ultipa's needed a graph
database that was:

* Very fast
« Scalable

 Capable of multi-hop graph traversal (+30 hops)

They tried several graph databases, but none met the performance,
low latency, and deep multi-hop graph traversal requirements.

So, they decided to create a completely new graph database and a
new company: Ultipa!

Intro, Ultipg, Inc

« Founded in 2019

« Headquarters in San Ramon, California

« Offices in China, Hong Kong, Singapore, Italy
« More than 100 employees
- Secured $21M in Series-A financing

« Vision: Building next-generation leading graph database products, and
empowering smart enterprise w/ graph augmented intelligence.

Ultipa Graph

@ Uttipa 1s a Native Graph Database

Type: Person
Name: Yuri Simione
Email: vuri.simione@ultipa.com

Type: Company
Name: Ultipa
Headquarters in: San Ramon, California

Work for
—_—
Role: Sales Manager

Graph Processing
(Query, algorithms)

Type: Person
Name: Yuri Simione [r—
Email: yuri.simione@ultipa.com

Type: Company
Name: Ultipa

Headquarters in: San Ramon,
California

Graph Storage

Index-free adjacency: Accessing nodes and relationships in a native graph database is an

efficient, constant-time operation and allows you to quickly traverse millions of
connections per second

@ Uttipa is a Property Graph Dataloase

Create Property

schema:

name:

type:

subTypes:

desc

Person

nationality

string

int3:
uint32
int64
uint64
float

double

datetime
timestamp

text

Create Property

schema: Person
nationality

type:

subTypes:

string

desc

A schemaless graph database is a type of database
system designed to store and manage graph data
without a predefined schema or structure:

* Users can add nodes and edges to the database
without specifying a fixed schema in advance.

e Users can attach properties of various data types to
nodes and edges without predefined rules.

 Two instances of the same node or edge type can
have different set or properties.

e Offer the freedom to query and traverse the graph
without being constrained by a predefined schema.

 Two developers can use different property names to

store the same data (ID, SSN, PERSONAL_ID,
personallD)

@ Schemaless \/S schematul

A SchemafullNErapRNGatabase is a type of database

system designed to store and manage graph data with a
predefined schema or structure:

* Users must adhere to this predefined schema when

adding data to the database.

* Schemafull graph databases enforce strict data type
constraints .

* Due to the fixed schema, querying and traversing the
graph follows a predefined structure. Queries are
typically more predictable and constrained compared
to schemaless databases

—

@ Ultipa Graph is demi-schema

Like a schemafull database, Ultipa Graph requires the definition of a schema in advance

Like a schemaless database, Ultipa Graph offers the freedom to query and traverse the graph without
specifying a predefined schema.

A Product and a Service are similar concepts but can be described by two different sets of properties.
In Ultipa Graph, we can model these concepts defining two node types, PRODUCT, SERVICE. Both can
have a property named price:

find().nodes({@PRODUCT && price <= 10} as myproduct return myproduct
find().nodes({@SERVICE && price <= 10} as myservice return myproduct

find().nodes({price <= 10}) as myselection return myselection

Demi-Schema is the best of both worlds!

i »
g i |
R i T
R iy

@ Mutbigraphand supemodes

B

Unlike simple graphs, where each pair of nodes Supernodes are graph nodes that are directly
is connected by at most one edge, multigraphs connected to a massive number of other nodes.

allow multiple edges between the same pair of
nodes. These multiple edges are often referred
to as "parallel edges.’

Ultipa has the capacity and the performance to allow you to include multigraphs and
supernodes in your analytic

Ultipa is a translytical graph database

Ultipa is a translytical™ graph database as it combines the capabilities of both transactional (OLTP) and analytical
(OLAP) databases into a single system. It is designed to handle both transactional processing and graph
analytical processing.

1.Real-Time Analytics: Ultipa can perform complex analytical queries and execute graph algorithms on live
transactional data in real-time or near-real-time, allowing organizations to make data-driven decisions without
the need for separate processes, like those used by other graph databases.

2.High Performance: Ultipa is optimized for both read and write operations, ensuring fast response times for
transactional tasks as well as graph analytical queries, even with large datasets.

3.Scalability: Ultipa is designed to scale horizontally and vertically to accommodate growing data volumes and
user loads, ensuring that performance remains consistent as data and workload increase. Ultipa can manage
hundred of billions of nodes/edges.

(*) Translytical is also referred as HTAP, Hybrid Transactional Analytical Processing

@ Uttipa Graph is inaedible fast

- Ultipa has been designed and developed with shared-nothing
architecture that's capable of HTAP, MPP and high-availability.

« Every component is written in C++

» For example, Ultipa provides full text indexing/search. The fulltext
engine is also written in C++ and integrated in the graph engine, it

IS not an external component
 Graph algorithms are written in C++

@ Ultioa Patents

- Mass Volume Data Import Method, Device and Storage Medium (2020103125644)
- Graph Data Processing Method, Device, and Storage Medium (2020103313770)
- Graph Database Deep Path Search and Dynamic Pruning Method (2020108170434)

- Graph Database’s Super Node Oriented Data Processing Method, Device and Storage Medium
(2020110826742)

- A Flexible Graph Data Schema Design Method — Demi-schema (202111640262.0)
- An HTAP Capable Graph Data Query Processing Method (202111640279.6)

We have many trade secrets that we cannot publicly disclose

Benchmark

https://www.ultipa.com/article/benchmarks/ultipa-graph-benchmark-report

Performance Benchmark

Ultipa has recently released v4.0 of its flagship graph database product, on top of its
v3.0’s already world-leading performance. Ultipa 4.0 introduced performance
improvements of 50% with a 30% reduction in memory usage

In a 2022 benchmark test using Twitter-2010 dataset (42M vertices and 1.47B edges),
Ultipa shows! great performance advantage over other graph systems (Neo4j,
Tigergraph, and ArangoDB) using a typical 3-instance PC-server cluster. Very
consistent benchmarking/stress-testing results have been achieved using any kind of
commercial or academic/public datasets:

Data Ingestion: Ultipa is 3-60 times faster than any other graph database.

K-Hop or Shortest Path: Ultipa is 10-1,000 times faster than any other graph
database. For ultra-deep (>6 hops) queries, Ultipa is the only system that can
return with correct results.

Graph Algorithms (PageRank, LPA, Louvain, Jaccard Similarity, Random Walk,
etc.): Ultipa is at least 10 times faster while some systems couldn’t return at all.

LOADING TEST

Loading the entire dataset into graph database and start providing services. This test
can show how fast a graph system ingest large-volume of data.

Data Loading Time
32200

20800

»
©
c
S 3120
d)
b
= 1550
- .
400 =—
Data Loading (seconds)
u Ultipa 520
u TigerGraph 1550
u Neodj 3120
JanusGraph 20800
® ArangoDB 32200

K-HOP NEIGHBOR QUERYING

K-hop query is a fundamental type of query with any graph system. It allows user to
quickly identify the scope of impact of an entity (the subject vertex). K-hop must be
implemented using BFS (Breadth-First-Search) method, and there are a few caveats:

- There are usually 2 ways of defining K-Hop and the results are different. One way is
all neighbors from the 1st hop all the way to the Kth hop, the other way is the
neighbors exactly Kth-Hop away from the starting vertex.

- If a vertex appears on the Nth Hop of a specific vertex, it will NOT appear on any
other hop. While executing the algorithm, it’s pivotal to conduct de-duplication of
vertices across different hops, otherwise, the results would be wrong.

K-Hop
Y-axis is avg. latency in seconds (Log Scale base 2)
3355.4432
1677.7216
838.8608
419.4304
209.7152 =)
104.8576 |
- 524288
T 262144
§ 13.1072 |
& 65536 |
> 32768
e 16384
2 08192
8 04096
@
g 02048 —
© 01024
[
$ oo0s12
< 00256
0.0128
0.0064
0.0032
0.0016
0.0008
0.0004 W b —
1-Hop 2-Hop 3-Hop 6-Hop
= Ultipa 0.00062 0.027 052 1.408
u TigerGraph 0.024 0.46 6.6 62.5
u Neodj 0.2 183 290
JanusGraph 0.39 27.7 4300

= ArangoDB 1.667 289 3888

https://www.ultipa.com/article/benchmarks/ultipa-graph-benchmark-report

s+

€ root@yuri_LegalTech > n({~fulltext_document "droga"}).e({@ReportedIn}).n() o~ C
nodes 100 nodes{_id, annullamentoConRinvio,

annullamentoSenzaRinvio, rigettato, inammissibile

¥
"

U Itl pa G ra ph |S SO n({~fulltext_document contai... X profile n({~fulltext_document... X

fa St that the droga"}).e({@Reportedin}).n() as nodes limit 100 return nodes{_id, annullamentoConRinvio, annullamentoSenzaRin = 1 >
microsecond

becomes the metric

for assessing Return

uql

performance!

profile n({~fulltext_document contains "¢

& nodes

LimitSkip

ugl : limit 100

input_vars -

time_cost : 2Us

Template

uq : n({~fulltext_document contains
'droga"}).e({@Reportedin}).n() as nodes

input_vars P —

imit o (0]0]

output_vars : ‘nodes

: false

19 e 791 1a
L Zms/Zs

Uttipa Graph

IS a native, translytical, property graph

S database, that can handle multipgraphs,
\\\ supernodes. It is demi-schema and it can
“~_handle hundred of billions of nodes/edges. It

\is capable of +30 hops queries. It is super
fast.

@ UQL, Utipa Query Language

« |t is the language exclusive for Ultipa Graph Database and Graph Computing Engine.

- DQL (Data Query Language): to query nodes, edges and paths in the graph;

- DDL (Data Definition Language): to add/delete GraphSet, modify schema, define
properties, create index etc.;

- DML (Data Manipulation Language): to insert, delete and update the metadata and other
content of GraphSet;

« DCL (Data Control Language): mainly used to manipulate database permission settings,
such as user management, role management, grant and revoke of permissions etc.

https://www.ultipa.com/document/ultipa-graph-query-lanquage/k-hop/v4.3

https://www.ultipa.com/document/ultipa-graph-query-language/k-hop/v4.3

s as paths

Comparison of GQLs: Cypher, GSQL & UQL

label: Person oo label: ng

Properties: { ‘ frelation: "is" } — Propert|e§."{ " .
name: "Areith", > .. name: "Chef ..
age: 18 - {Schema: "jobis" } 3 | .

} Schema: Job

Schema: Person

Match path = (p:Person) — [{relation:"is"}]-(j:Job)
Where p.name = "Areith" && j.n

return path Cypher (label-only)

"Areith" }) . e({ @jobis }) .n({

"Chef " })
v Schems|

"Areith" }) . e() .n({ nam "Chef " })

@job.name

return paths

n({ nam
as paths
return paths

Online Document: https://www.ultipa.com/article/technical/graph-query-languages-simplicity-speed

CREATE QUERY areithjob(vertex<word> w) for graph
test {

SetAccum<node> @@nodeSet;

SetAccum<edge> @@edgeSet;

g.V().hasLabel('person’).has(‘'name’,"areith").outE().ha

sLabel("jobls").V().hasLabel("job").has("name","chg Start = {persion.*}

.path in << n D

path(— Result = select j from Start::p - (jobls:e) - job:j

n({ @person.nam

WHERE p.name == "areith" AND j.name ==
"chef"
accum @@nodeSet += p,
accum @@nodeSet +=j,
accum @@edgeSet + = ¢;

print @@nodeSet; z
print @@edgeSe& Complex

https://www.ultipa.com/article/technical/graph-query-languages-simplicity-speed

@ UQL, Utipa Query Language

* We do not support openCypher, but we provide a tool to migrate
Cypher queries to UQL

MATCH (n) RETURN n

find() .nodes({}) as n RETIRN n

MATCH (movie:Movie) RETURN movie.title

find() .nodes({@Movie}) as movie RETURN movie.title

MATCH (director {name: 'Oliver Stone'})--(movie) RETURN movie.title

n({name == 'Oliver Stone'} as director) .e({}). n({} as movie) RETURN movie.title

MATCH (:Person {name: 'Oliver Stone'})--(movie:Movie) RETURN movie.title

n({@Person && name == 'Oliver Stone'}) .e({}). n({@Movie} as movie) RETURN movie.title
MATCH (:Person {name: 'Oliver Stone'})-->(movie) RETURN movie.title

n({@Person && name == 'Oliver Stone'}) .re({}). n({} as movie) RETURN movie.title

« We will support GQL, when this ISO standard will be released
(2024)

https://www.ultipa.com/document/ultipa-graph-query-lanquage/k-hop/v4.3

https://www.ultipa.com/document/ultipa-graph-query-language/k-hop/v4.3

A set of native SDKs to build custom
~ applications. We support:

S Restful API

. *Java

Y *Python
1 *GGo
' *NodeJS

https://www.ultipa.com/document/ultipa-drivers/restful-api/v4.3
https://www.ultipa.com/document/ultipa-drivers/java-installation/v4.3
https://www.ultipa.com/document/ultipa-drivers/python-installation/v4.3
https://www.ultipa.com/document/ultipa-drivers/go-installation/v4.3
https://www.ultipa.com/document/ultipa-drivers/nodejs-installation/v4.3

Ultipa Toolchain

With the world's only 4th-generation graph database, Ultipa offers an unprecendented graph computing
experienece built on an innovative and intuitive graph toolchain.

Ultipa Transporter Ultipa Manager

Import/export data Visualize data on 2D/3D
from any data sjources Interactive Web GUI to
with automatic error power your intuitive graph

Ultipa Maker detetion e
- @ SPEMENCEON 1)tipa Analytics & Algorithms

Model & migrate
data on live from all Analyze with 100+ advanced
graph algorithms that can be hot-

other DBMS to
Ultipa Graph ' plugged in anytime without server
interruptions

Ultipa CLI

Operate the graph-
native command line
interface with super

fast response and ease
of use

Ultipa AP1/Drivers

Programme in your

§ preferred language while
stay tuned with the highly
available Ultipa Graph

¥
ULtiPad

Signaturing intuitiveness with the cutting-
edge graph technology

Ultipa Cloud

Experience the ultimate
cloudification of Ultipa
WGraph with spot-on
gintuitiveness, powerfulness
and pay-as-you-go HTAP
graph database as a service

Ultipa Deployer
Configure and

execute on Ultipa

HTAP cluster with
minimum operations

Library of Graph Algorthms

 Hot—pluggable, hot—updatable

 Written in C++

« More than 50 (actually more than 100!)

« 9O graph embedding algorithms

 We provide SDK to create new algorithms

Graph Algorithms

Graph Accelerated Data Science

Degree & Similarity

Degree

Centrality
Closeness
Jaccard Similarity
Cosine Similarity
Adamic-Adar

Graph Embedding

Random Walk
Node2Vec
Struc2Vec
LINE
Fast RP Community Detection
GraphSage Page Rank
Sybil Rank

Label Propagation
HANP
Louvain

‘/ Advanced Algorithms

General Algorithms:
BFS/DFS

K-Hop-All

Connected Component
Triangle Counting

Circle-Detection
Common Neighbors
Induced Subgraph
Bipartite Graph

https://www.ultipa.com/document/ultipa-graph-analytics-algorithms/introduction/v4.3

https://www.ultipa.com/document/ultipa-graph-analytics-algorithms/introduction/v4.3

Benchmark

https://www.ultipa.com/article/benchmarks/ultipa-graph-benchmark-report

Shortest Paths (All Paths)

PageRank, LPA (Twitter)

Y-axis is avg. latency in seconds

g - 1000 900
g .g 900
o
;’Ii 8 800
E 18, 700 600
6
- § 500
v
zép S 400
o o 300 258
2 oY)
© 200
g 100
<<
0
PageRank LPA
mU m Ultipa 23 80
i m TigerGraph 258 900
"N =Neosj 600
Ja
JanusGraph
A

m ArangoDB

https://www.ultipa.com/article/benchmarks/ultipa-graph-benchmark-report

A o
Not all graph databases are the same! LﬁﬂULtnPa

Champion

aWS @ ArangoDB

Ol ataccama blagg 5?/341

MarkLogic —; ~— Ontotext \-/‘7
DataStax ph (4, LS CLOUDZRA ey DATASTAX?
lardog . Formanzne. HITACHI EE::_——E; ="MarkLogic
Cambrild e Semantics I NEeO0Lj 4
RedisG agh Iw (%EM I Micgsolt @ 4l Objectivity
Tigergraph

... ~ 4 . N - i
{zontotext ORACLE S Q"k@

b N
@ros @SOLIX *Sparsity OR
STARDOG

talend ~ %rowcen TROVARES [FluLtiPa

https://www.bloorresearch.com/technology/graph-databases/

https://www.bloorresearch.com/technology/graph-databases/

Ultipa & South Korea

« We are looking for partners located in South Korea

 We are open to helping potential customers select the right
graph database for their requirements (hopefully Ultipa!).
Let’s work on a Proof of Concepit.

« Are you interested in learning more about Ultipa Graph and
becoming an Ultipa Certified Engineer soon? Here's my
proposal:

« | will schedule a free online, exclusive, one-day training
for GUG members this November.

« We are offering a free voucher to obtain certification (a
$99 value) for the first 10 people who send a request to
yuri.simione@uiltipa.com using a business email.

LinkedIn: https://www.linkedin.com/in/yurisimione/
Twitter: https://twitter.com/artika4biz

Email yuri.simione@ultipa.com

Cell. +39 333 4156248

https://www.linkedin.com/in/yurisimione/
https://twitter.com/artika4biz
mailto:Yuri.simione@ultipa.com

HAFE YT

