admin

GraphOmakase

25년 10월 2주차 그래프 오마카세

Flexible GraphRAG: a configurable open source framework for GraphRAG Blog link : https://integratedsemantics.org/ Github : https://github.com/stevereiner/flexible-graphrag * 이번 주 오마카세는 'Open Source Integrated AI and Semantic Tech' 블로그에서 설명하는 통합된 오픈소스 플랫폼 관련한 소식을 전달해드리고자 합니다. 최근 포스트에서는 문서 처리, 지식 그래프 구축, RAG 및

By admin

GraphOmakase

25년 10월 1주차 그래프 오마카세

Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph Properties Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph PropertiesRecent large-scale reasoning models have achieved state-of-the-art performance on challenging mathematical benchmarks, yet the internal mechanisms underlying their success remain poorly understood. In this work, we introduce the notion

By admin

GraphOmakase

25년 9월 4주차 그래프 오마카세

Are Large Language Models Good Temporal Graph Learners? Youtube link : https://www.youtube.com/watch?v=jmCwOQX9Ank * 이번 주 오마카세는 TGL (Temporal Graph Learning) 세미나에서 대규모 언어 모델(LLM)이 관계형 데이터베이스에서 어떻게 딥러닝을 수행하는지에 초점을 맞추어 발표된, 기존의 시계열 그래프 학습 방법론에 LLM을 접목하여 새로운 가능성을 탐색한 '대규모

By admin

GraphOmakase

25년 8월 3주차 그래프 오마카세

Tensor-view Topological Graph Neural Networks paper link :https://arxiv.org/abs/2401.12007 official code : https://github.com/TaoWen0309/TTG-NN?utm_source=catalyzex.com * 저번 주 오마카세로 전해드렸던 텐서 연산의 그래픽 이해를 바탕으로, 이번 주 가볍게 소개해드릴 논문은 텐서 학습을 통합하여 로컬 및 글로벌 레벨에서 Tensor-view Topology 정보와 Tensor-view Graph의

By admin

GraphOmakase

25년 8월 2주차 그래프 오마카세

Graph Tensor Networks: An Intuitive Framework for Designing Large-Scale Neural Learning Systems on Multiple Domain paper link : https://arxiv.org/abs/2303.13565 * 현재 토폴로지 신경망의 학습 메커니즘을 설계하는 과정에서 매우 중요한 텐서 연산에 대한 이해를 크게 도와준 논문 하나를 여러분들께 소개해드리려고 합니다. 그래프 구조를 활용하여 다양한 신경망의 텐서 연산

By admin

GraphOmakase

25년 8월 1주차 그래프 오마카세

A General Graph Spectral Wavelet Convolution via Chebyshev Order Decomposition paper link : https://arxiv.org/abs/2405.13806 official code : https://github.com/liun-online/WaveGC * 그래프 스펙트럼 컨볼루션은 그래프 신호처리 이론을 기반으로 그래프 필터링, 데이터 분석 등의 넓은 분야에서 활용되고 있습니다. 다음은 그래프 스펙트럼 변환을 위한 신호 기저 (고유벡터) 선택

By admin

GraphOmakase

25년 7월 4주차 그래프 오마카세

Mitigating Over-Squashing in Graph Neural Networks by Spectrum-Preserving Sparsification paper link : https://arxiv.org/abs/2506.16110 official code : https://github.com/Jinx-byebye/GOKU * ICML 2025 논문 리스트업 중 그래프 스펙트럼 관점에서 오버스쿼싱 문제를 해결하는 새로운 Graph Rewiring 논문을 가볍게 리뷰 전달을 해드리고자 합니다. 국내 그래프 연구에서 빼놓을 수 없는

By admin