그래프 튜토리얼 3화 : Graph Node Sampling

Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a MeasurementLong-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks,
No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning DatasetsBenchmark datasets have proved pivotal to the success of graph learning, and good benchmark datasets are crucial to guide the development of the field. Recent research has
Tensor-view Topological Graph Neural Networks paper link :https://arxiv.org/abs/2401.12007 official code : https://github.com/TaoWen0309/TTG-NN?utm_source=catalyzex.com * 저번 주 오마카세로 전해드렸던 텐서 연산의 그래픽 이해를 바탕으로, 이번 주 가볍게 소개해드릴 논문은 텐서 학습을 통합하여 로컬 및 글로벌 레벨에서 Tensor-view Topology 정보와 Tensor-view Graph의
Graph Tensor Networks: An Intuitive Framework for Designing Large-Scale Neural Learning Systems on Multiple Domain paper link : https://arxiv.org/abs/2303.13565 * 현재 토폴로지 신경망의 학습 메커니즘을 설계하는 과정에서 매우 중요한 텐서 연산에 대한 이해를 크게 도와준 논문 하나를 여러분들께 소개해드리려고 합니다. 그래프 구조를 활용하여 다양한 신경망의 텐서 연산