그래프 튜토리얼 1화 : Main Concept of Graph Neural Network

그래프 튜토리얼 1화 : Main Concept of Graph Neural Network

Read more

26년 1월 3주차 그래프 오마카세

GUG Interview 안녕하세요, 정이태입니다. GUG talks 소식을 전해드립니다. 이번 세션은 Neo4j 솔루션 엔지니어 Bryan Lee 함께 점심시간을 활용해 온라인으로 진행합니다. 가볍게 점심을 준비해 편안한 마음으로 참여해 주시면 좋을 것 같습니다. Bryan disucssion topic 최근 지식 그래프(Knowledge Graph) 구축을 위한 NER(Named Entity Recognition) 태스크에서 다양한 연구와 시행착오를 겪은 Bryan의

By omakasechef

26년 1월 2주차 그래프 오마카세

mHC-GNN: Manifold-Constrained Hyper-Connections for Graph Neural Networks mHC-GNN: Manifold-Constrained Hyper-Connections for Graph Neural NetworksGraph Neural Networks (GNNs) suffer from over-smoothing in deep architectures and expressiveness bounded by the 1-Weisfeiler-Leman (1-WL) test. We adapt Manifold-Constrained Hyper-Connections (\mhc)~\citep{xie2025mhc}, recently proposed for Transformers, to graph neural networks. Our method, mHC-GNN, expands

By omakasechef

26년 1월 1주차 그래프 오마카세

Beyond Context Graphs: Why 2026 Must Be the Year of Agentic Memory, Causality, and Explainability https://medium.com/@volodymyrpavlyshyn/beyond-context-graphs-why-2026-must-be-the-year-of-agentic-memory-causality-and-explainability-db43632dbdee * 안녕하세요, 구독자 여러분. 희망찬 2026년 새해가 밝았습니다. 새해 복 많이 받으시고, 좋은 일들로 가득한 한 해가 되시기를 바랍니다. * 2026년의 첫 오마카세로 어떤 것이 좋을지 여러 아티클들을 찾아보고 읽어보다가, "요즘

By omakasechef